

NOx Control Options for Industrial Applications

CIBO Technical Focus Group December 8, 2009

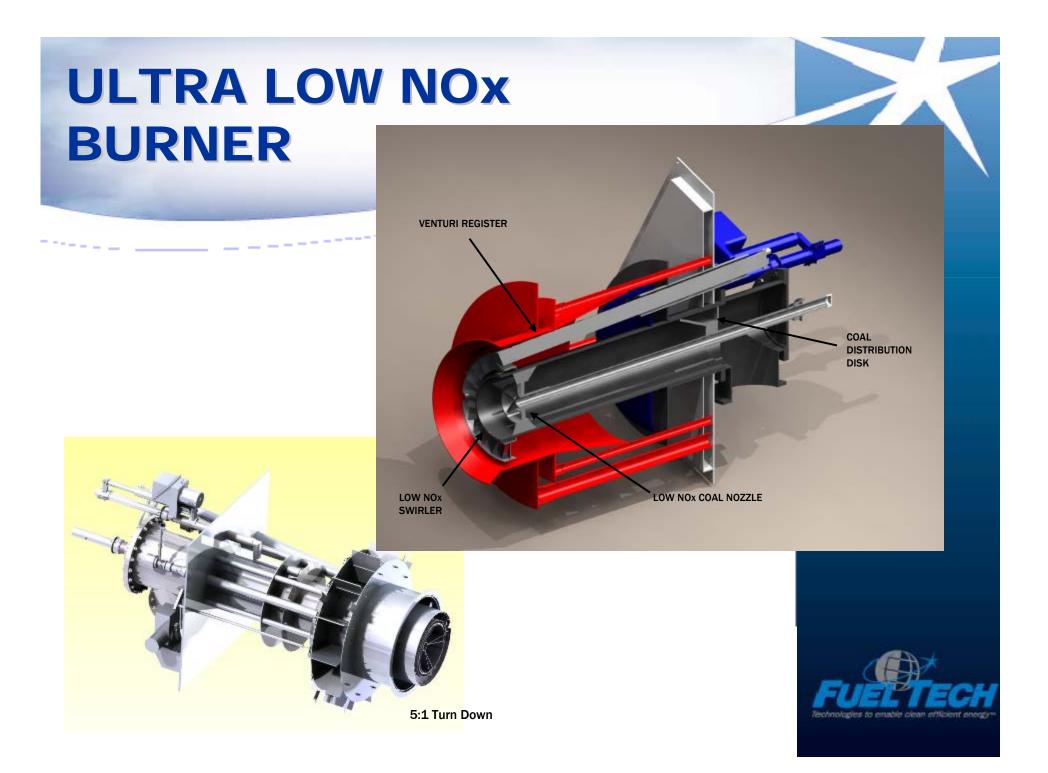
Reducing NOx Emissions

- Combustion Controls
 - Low-NOx Burners
 - Over-Fired Air
- Post-Combustion Controls
 - Selective Non-Catalytic Reduction
 - Selective Catalytic Reduction
- Layered Technologies
 - Rich-Reagent Injection
 - OFA/SNCR
 - SNCR/SCR Systems

Combining NOx Reduction Technologies

Technology	Strength	Limitations
Low-NOx Burners	Low Capital and Operating	Combustion, Corrosion, CO
Combustion Mods / OFA	Low Capital and Operating	Combustion, Corrosion, CO
SNCR	Low Capital NOx Red%	NH3 Slip ABS
SCR	NOx Red% Low NH3 Slip	High Capital SO ₃ Oxidation

Reducing NOx Emissions


- Combustion Controls
 - Low-NOx Burners
 - Over-Fired Air
- Post-Combustion Controls
 - Selective Non-Catalytic Reduction
 - Selective Catalytic Reduction
- How do we Capture the Strengths?
- How do we Minimize the Limitations?

Combustion and LNB

- Ultra Low-NOx Burners
 - Coal, Oil, Natural and Refinery Gases
 - Reduce O2 in the High-Temperature Flame
 - Provide Mixing to Complete Combustion
 - OFA Systems
 - Reduce O2 in the Combustion Zone
 - Design an Efficient CO Burnout Zone
 - Combustion Tuning
 - Secondary Air Flow Testing
 - Coal Flow Testing
 - Emissions testing



Upgrade utilizing existing register

New OFA Duct Layout (OFA) SYSTEM

Post Combustion Controls Selective Non-Catalytic Reduction

Urea Process Chemical Reaction

 $2NO + NH_2-CO-NH_2 + \frac{1}{2}O_2 \implies 2N_2 + CO_2 + 2H_2O_2$

NITROGEN OXIDE + UREA + OXYGEN ⇒ NITROGEN + CARBON DIOXIDE + WATER

SNCR Technology Overview:

In-furnace, Post-combustion Control

- Injection of Aqueous Urea Droplets
- Aqueous Urea vs. Ammonia:
 - Safety Concerns/Costs
 - Better Ammonia Slip Control
 - Advantageous Temperature Window
 - Significantly Better Distribution
- Package Boilers to Utility Boilers
- Target Temperature: 1500F 2200F

SNCR Process Application

- Computational Fluid Dynamics
- Chemical Kinetics Model
- Injection Model

SNCR Process Application

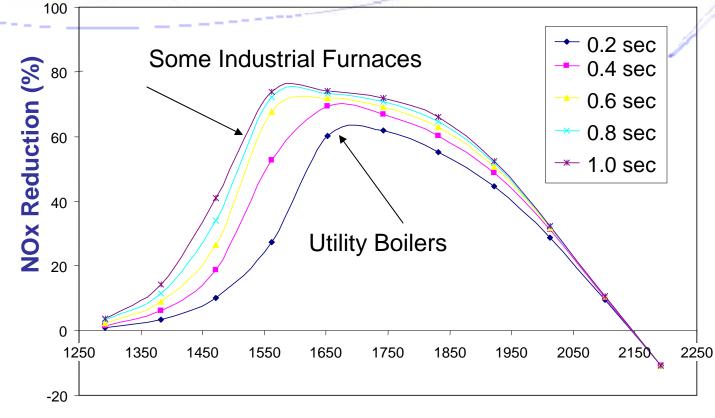
Two Aqueous Urea Injection Techniques

- NOXOUT
 - Air atomized injector
 - High momentum droplets
 - -200 to 500 microns, 20-30 m/s
 - HERTTM
 - Mechanically atomized
 - High velocity carrier air, 45 m/s
 - Narrow Droplet Size Distribution

Controlling Risks SNCR:

- Carefully Target the Injection Zone
 - CFD Modeling
 - Field Assessments / Demonstrations
 - Understanding the Chemistry
 - Ammonium Bisulfate Formation
 - Referring to Experience Database
 - More Than 450 Application
 - Vast Majority Industrial Applications

SNCR Systems -Industry Experience


- **·Electric Utilities**
- Wood-fired IPPs / CoGen Plants
- **.TDF Plants**
- -Pulp & Paper
- Grate-fired
- Sludge Combustors
- Recovery Boilers
- Wellons Boilers
- · Cyclones

Refinery Process Furnaces
CO Boilers
Petrochemical Industry
CoGeneration Package Boilers
Municipal Solid Waste
Process Units
Cement Kilns

NOx Reductions from 30% to 70%

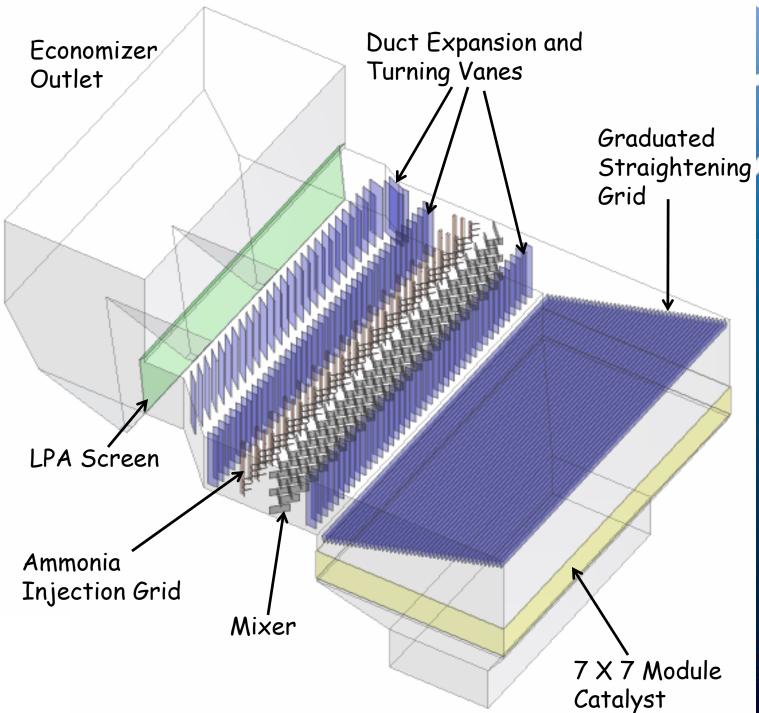
NOx Reduction is a Function of Temperature and Residence Time

Temperature (F)

Post Combustion Controls Selective Catalytic Reduction

- NH3 and NO React over a Catalyst
 - 600F to 700F
 - Nearly 100% Chemical Utilization
 - Capable of Very High Reductions
 - Limitations
 - Capital Cost Modifications
 - Industrial Poisons
 - Unsteady Operations
 - SO3 formation
 - Additional pressure drop

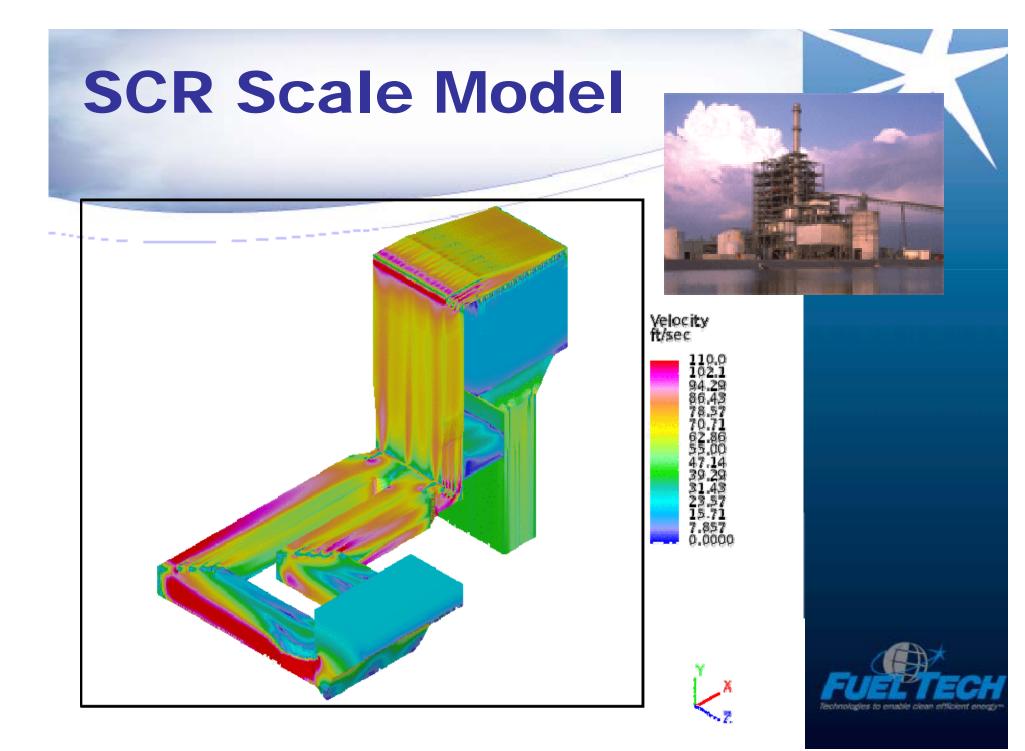
Controlling Risks SCR:

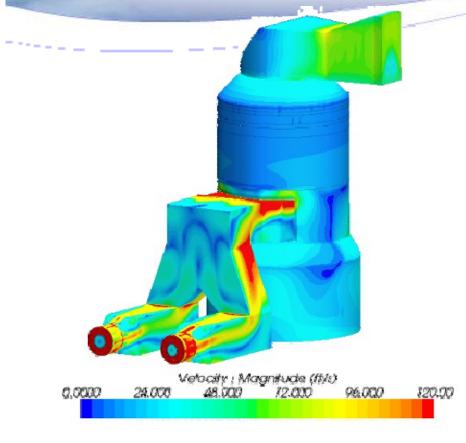

- Lower the NOx Baseline
 - Decrease Ammonia Slip
 - Increase Performance of the SCR
 - Utilize a Simple Single-layer SCR
 - Reduced Capital
 - Reduced Catalyst Replacement Cost
 - Reduced SO3 and Pressure Drop
 - Layered Technologies
 - Reduced Reliance on the SCR
 - Improved Flexibility for Operations

ASCR - Advanced

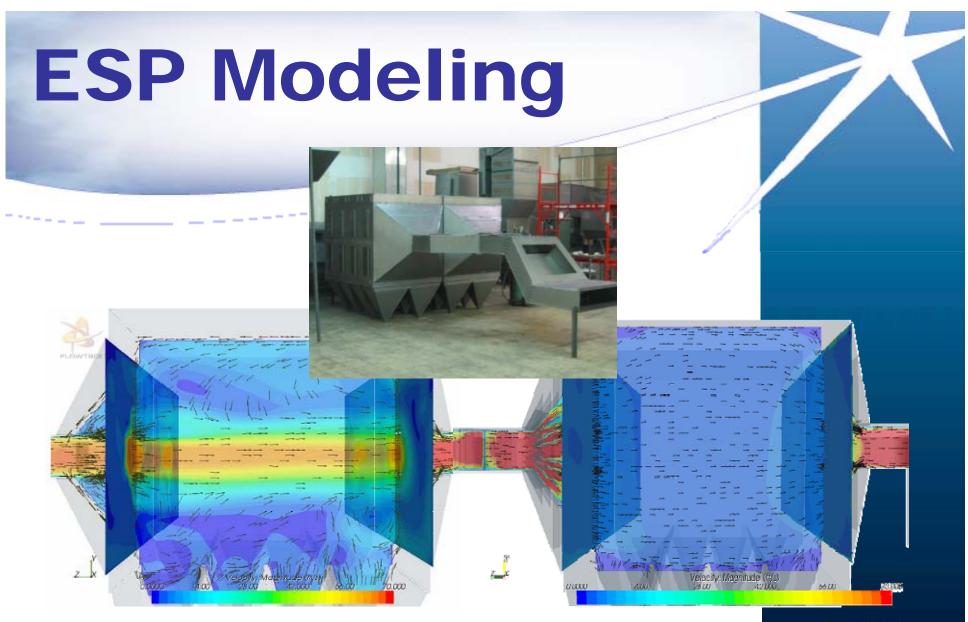
- A State of the Art small SCR
 - Optimal Use of Available Space
 - In-duct Ammonia Injection Grid (AIG)
 - Fully Engineered Flow Devices
 - Supported by Catalyst Manufactures
 - Guaranteed Performance

Physical Flow Modeling Facility

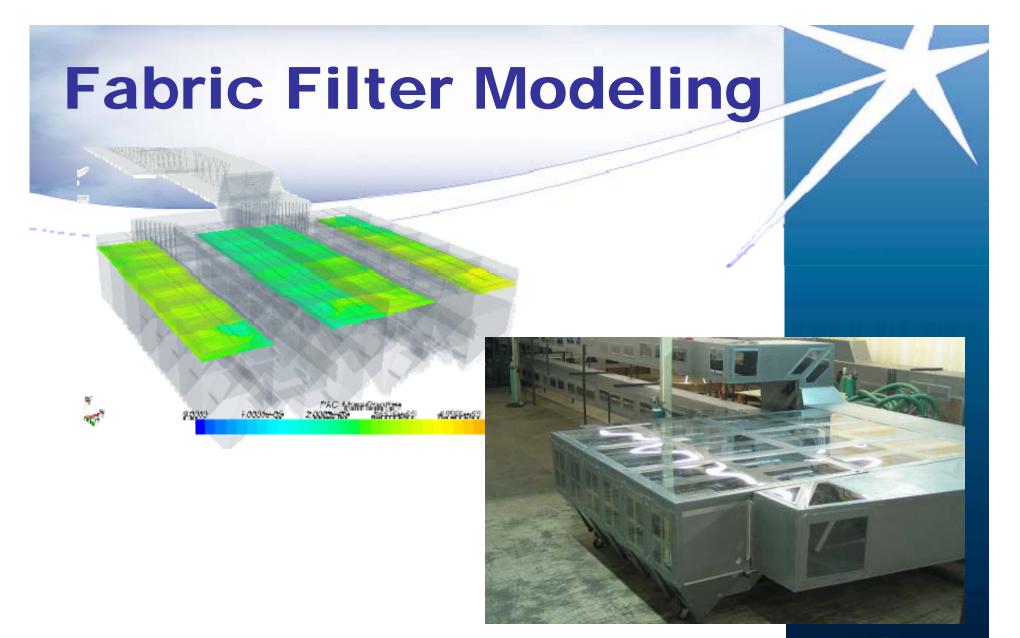

- □ Over 16,000 ft² of Laboratory, Office and Storage Space
- Capacity to Handle Several Large Models Simultaneously
- **G** Full Welding, Machining and Fabrication Capabilities
- Durham, NC Facility



SCR Scale Model



WFGD Scale and CFD Modeling



Combining NOx Reduction Technologies

Technology	Strength	Limitations
Low-NOx Burners	Low Capital and Operating	Combustion, Corrosion, CO
Combustion Mods / OFA	Low Capital and Operating	Combustion, Corrosion, CO
SNCR	Low Capital NOx Red%	NH3 Slip ABS
SCR	NOx Red% Low NH3 Slip	High Capital SO ₃ Oxidation

Retrofit Low-NOx Burner Installation

Technology	Strength	Limitations
Low-NOx Burners	Low Capital and Operating	Combustion, Corrosion, CO
Combustion Mods / OFA	Low Capital and Operating	Combustion, Corrosion, CO
SNCR	Low Capital NOx Red%	NH3 Slip ABS
SCR	NOx Red% Low NH3 Slip	High Capital SO ₃ Oxidation

Moderate Combustion Modifications

Technology	Strength	Limitations
Low-NOx	Low Capital	Combustion,
Burners	and Operating	Corrosion, CO
Combustion	Low Capital	Combustion,
Mods / OFA	and Operating	Corrosion, CO
SNCR	Low Capital	NH3 Slip
	NOx Red%	ABS
SCR	NOx Red%	High Capital
	Low NH3 Slip	SO ₃ Oxidation

Conservative SNCR application

Technology	Strength	Limitations
Low-NOx Burners	Low Capital and Operating	Combustion, Corrosion, CO
Combustion Mods / OFA	Low Capital and Operating	Combustion, Corrosion, CO
SNCR	Low Capital NOx Red%	No NH3 Slip No ABS
SCR	NOx Red% Low NH3 Slip	High Capital SO ₃ Oxidation

1

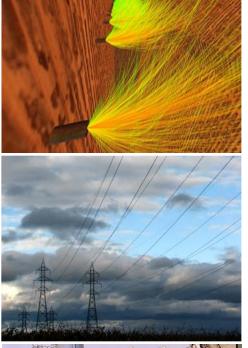
Aggressive SNCR application

Technology	Strength	Limitations
Low-NOx	Low Capital	Combustion,
Burners	and Operating	Corrosion, CO
Combustion	Low Capital	Combustion,
Mods / OFA	and Operating	Corrosion, CO
SNCR	Low Capital	NH3 Slip
	Improve Red%	ABS
SCR	NOx Red%	High Capital
	Low NH3 Slip	SO ₃ Oxidation

In-Duct or Small SCR Space

Technology	Strength	Limitations
Low-NOx Burners	Low Capital and Operating	Combustion, Corrosion, CO
Combustion Mods / OFA	Low Capital and Operating	Combustion, Corrosion, CO
SNCR	Low Capital Improve Red%	NH3 is OK Feed to SCR
Small SCR	More Red% Low NH3 Slip	Mod Capital, SO_3 and Cost

-


Layered NOx Solutions

- Utilize Optimal Technology Suite
 - Custimized to Reduce Risks
 - Balanced to Reduce Costs
 - Capital vs. Operation Costs
 - Variations in Fuel and Capacity
 - Best Possible Performance
 - NOx Reduction
 - Secondary Impacts (BOP)

NOx Control Options for Industrial Applications

QUESTIONS?