
A Fundamental Approach to Energy Management

CIBO Focus Group: Improving Energy Efficiency June 9, 2009

Ken Lesher Global Energy Management Director (Retired) Albemarle Corporation Magnolia, AR 870-949-1526 sackec@suddenlink.net

Overview

- Background Information: Albemarle Global Energy Management Process
- Fundamentals of Energy Management
- Defining the Energy Management (EM) Objectives
- Defining the methodology
- Four Tiered EM Model
- Implementing the EM Program
- Most effective EM methods and tools
- Best Practices Document example

Albemarle Corporation

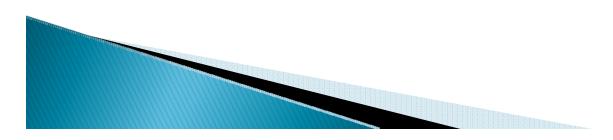
- Specialty Chemicals Corporation (\$2.4 B in gross sales/year)
 - Catalysts
 - Flame Retardants
 - Pharmaceuticals
 - Specialty intermediates
 - Completion Fluids

13 Manufacturing Sites Globally (2,500 employees)

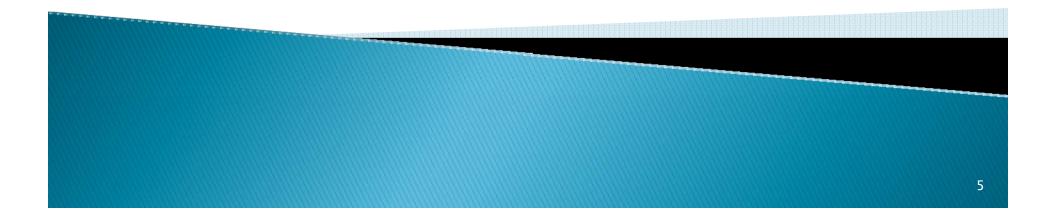
- 7 US Manufacturing Sites
 - Magnolia, AR
 - Pasadena, TX
 - Bayport, TX

South Haven, MI Orangeburg, SC Baton Rouge, LA

- Tyrone, PA
- 5 EU+ 1ME Manufacturing Sites


- Bergheim, GR
- Safi, Jordan

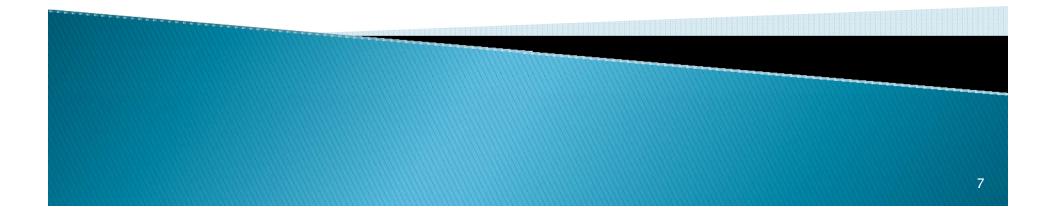
Amsterdam, NE Teesport, UK Avonmouth, UK


Port–de–Bouc, FR

<u>Albemarle Global Energy Management</u> Achievements

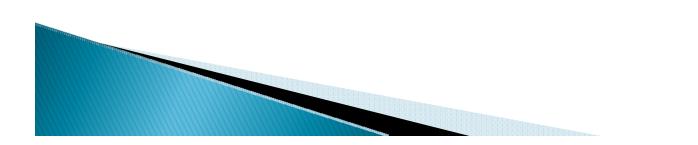
- Implemented energy reductions equivalent to approximately 14.3% (1.8 trillion BTU/yr) of annual energy consumed globally over 3 year period
- Received 12 American Chemistry Council Energy Efficiency Awards including Exceptional Merit for the actual EM Process

Fundamentals of Energy Management

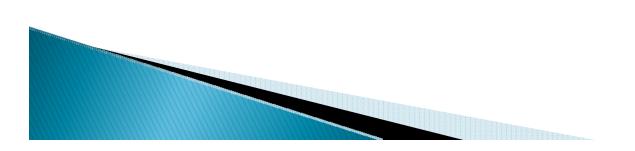


Fundamentals of Energy Management

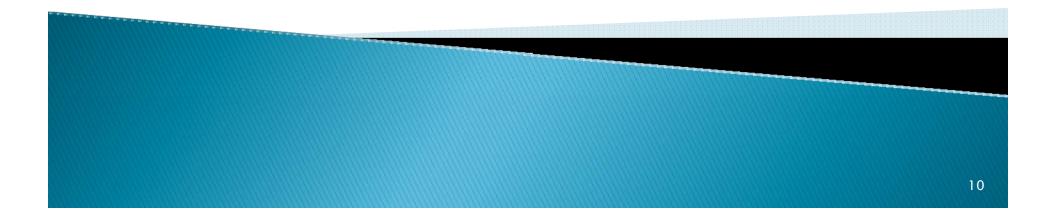
- What is Energy Management (EM)?
 - EM is the <u>managing or controlling</u> of energy usage by maximizing the <u>efficient</u> use of a <u>minimal amount</u> of energy to do the desired job or task.
- E M is a <u>continuous energy efficiency improvement process</u>
- E M should involve more than just developing <u>energy</u> <u>efficiency</u> cost reduction projects
 - Implementing a culture for energy efficiency
 - Improved work practices


- Implementing the tracking and control of energy utilizations and their improvements
- > You do not improve what you do not <u>measure</u>!
- You achieve the <u>greatest benefit</u> where you <u>focus</u> your resources and you want to focus your resources where you get the greatest benefits

Energy Management Program Objectives


Energy Management Program Objectives

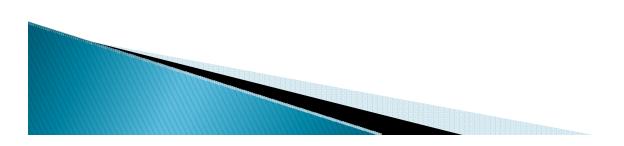
- Defining the basic objectives of an Energy Management (EM) Program?
 - Improve overall energy <u>utilization/efficiency</u>
 - Eliminate the need for the energy or eliminate the task
 - Minimize the energy consumed for the task
 - Maximize recovery of lost or rejected energy
 - Reduce energy costs (efficiency/price)
 - Leverage new technologies
 - Implement energy utilization <u>tracking and control process</u>
 - Define and measure all Key Energy Variables (KEV's)
 - Develop meaningful energy utilizations and cost trending capability



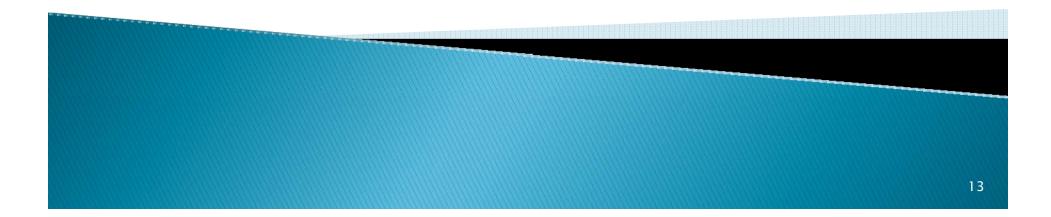
Energy Management Program Objectives

- Defining the basic objectives of an Energy Management (EM) Program?
 - Develop an effective energy efficiency <u>culture</u>
 - Develop improved work practices through awareness
 - Industry Best Practices
 - Tracking and control capability promotes improved procedures
 - Employee training and awareness
 - Maximize other benefits (environmental, safety, cost, etc.)
 - Provide long term viability with a <u>continuous improvement</u> approach

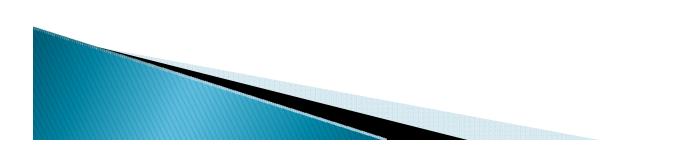
Defining the EM Program Methodology

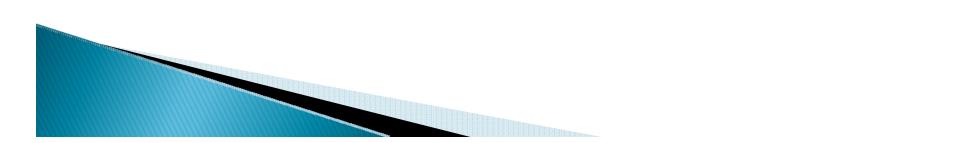

Defining the EM Program Methodology

- EM is a multi step process (four tiered model)
- 80%/20% rule usually applies
 - 80% benefits come from 20% of the projects or opportunities
 - 20% of the people control 80% of the energy consumption
 - People solutions are 80% of the answer, technical solutions are 20%
- A "Best Practices" document is a powerful tool to enhance consistency, generating new ideas and improving the culture
 - Improved work practices
 - Improved procedures
- Tracking/reporting progress of opportunity successes are essential
 - Drives completions of opportunities


• Enhances EM momentum and management support

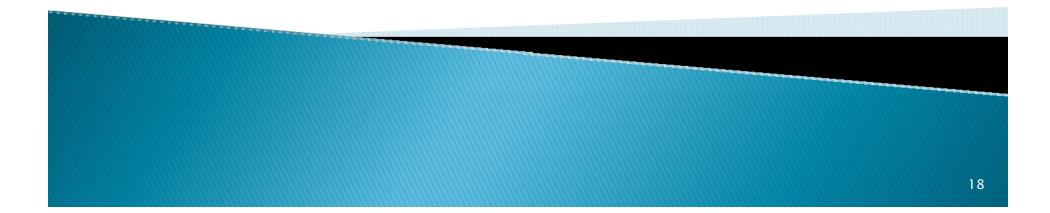
Defining the EM Program Methodology


- Measurement of process Key Energy Variables (KEV's) and data analysis/trending for major energy consumers
 - Sustainability of improvements
 - Future opportunity development
 - Verification of improvements
- All forms of energy and major users should be reviewed and monitored
- > EM is a top down model so keep senior management involved
 - Success breeds success


Four Tiered EM Model Areas of Focus

- Tier 1: A low to no capital project approach
 - Focus priority on major energy processes/users for opportunities
 - Conduct internal and external energy assessments (audits)
 - Easily identified and relatively simple to correct issues
 - Fix what is broke
 - Low capital with quick high economic returns (low hanging fruit)
 - Relatively low technology solutions
 - Installation of measurement devices (if not existing)
 - Heat and energy balances to match lost or rejected energy(heat) with processes that have a need for energy (heat)

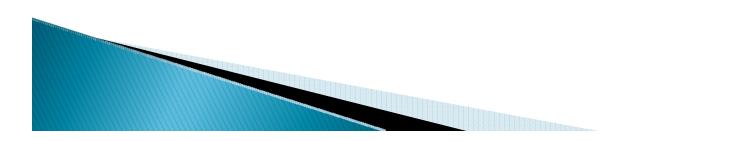
- Tier 2: Higher capital requirement project approach with possibly lower financial returns (focus on the more significant and difficult to fix energy efficiency improvements)
 - Higher technology level solutions and longer completion schedules
 - Formalized idea generation and screening process
 - Formalized project development and tracking process
 - Formalize energy consumption tracking with KEV's
 - Increased capital and resource costs with acceptable benefits
 - Improved control devices/systems where required
 - Verification of benefits (tracking/reporting process)



- Tier 3: Operating Discipline approach to EM (work force behavior changes)
 - Developing the energy efficiency culture
 - Improved work practices/procedures
 - Enhance employee awareness through involvement
 - Implement use of self generated "Best Practices" document
 - Employee/Operator training

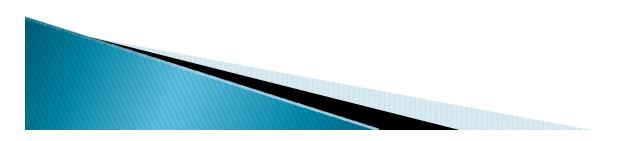
- Measurement and Gap Analysis (current KEV operating performance vs best demonstrated performance)
- Outside experts or consultants for assistance in specific areas
 - Nick Spates (Modular Process Control, LLC) 404-240-0454
- EM tied to site operational performance and compensation benefits

- Tier 4: Long term "Strategic Intent" with EM
 - Significant Corporate Management commitment/involvement
 - Benefits defined beyond pure economics
 - Corporate performance tied to EM program
 - High level technologies (alternate fuels, co-gen, wind power, geothermal power, etc.)
 - Re-invent the processes for energy efficiency
 - EM involvement in new plant designs before construction
 - Longer term continuous improvement process
 - Competitive advantage

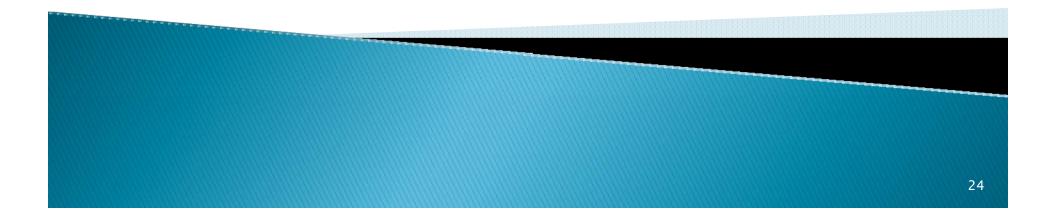

- Set energy efficiency improvement targets and expectations with top Management:
 - Set clear target reductions and other objectives
 - Define roles and responsibilities(organizational effectiveness)
 - Resource availability
 - Timing requirements
 - Capital availability/economic return requirements
- Develop formal cross functional site EM Team to implement overall EM site strategy to include Maintenance and Operational aspects for improvement (and others)
 - Designate dedicated team members including overall Site EM Coordinator
 - Site EM Coordinator/site management develop path and program agenda
 - Set review meeting frequency and format

Develop reporting requirements/frequency

- Develop an "idea generation process"
 - Conduct "brain storming" sessions
 - Process experts and non-experts combined
 - As many functional groups and management levels as possible
 - May conduct in two sessions (new ideas/assessment of the ideas)
 - Conduct energy consumption assessments (internal/external)
 - Review available data plus Material Balances, Energy Balances, Process
 Flow Sheets, Utility Flow Diagrams
 - Energy intensive processes/major energy users
 - Energy distribution systems


- Major sources of heat/energy losses
- All forms of energy
- Plant energy consumption data and tracking info (KEV's)
- Literature searches
 - Conferences, technical meetings, DOE publications
- Employee involvement

- > Develop an "idea or opportunity screening process"
 - Document all ideas
 - Energy pricing is very dynamic
 - Completed projects may enhance previously tabled ideas
 - New technology may present itself to bridge gaps
 - Define basic project or opportunity concept, benefits/economics
 - Establish idea priority for resource/capital allocation
 - Cost
 - Overall benefits
 - Technical difficulty
 - Probability of success (technology, regulatory, process difficulty)
 - Risk issues (process, safety, environmental)
 - Business impact (other than financial)



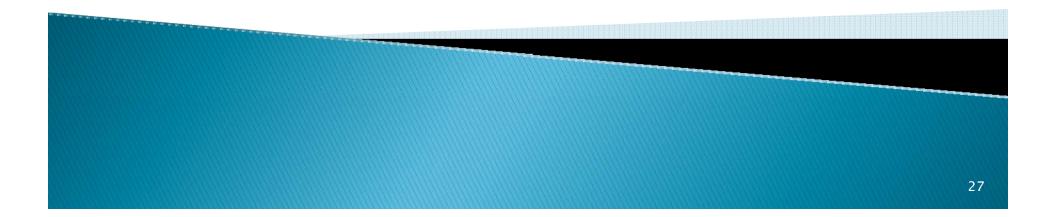
- Project scope development
 - Review alternative options and new technologies
 - Look for industry success stories and creative solutions
 - Literature search (Department of Energy publications)
 - EM and technical seminars
- Develop a EM project tracking and reporting system capable of verifying achieved results by project
 - Develop formal energy management reports
- Develop energy consumption measurement and trending (KEV's)
 - Current KEV's vs. best demonstrated performance (gap analysis)
- Enhance culture and improve employee awareness
 - Develop and implement improved work practices/procedures
 - Involve employees in idea generation process
 - Provide necessary employee training

- Develop and implement a comprehensive site EM Best Practices document
 - Conduct gap analysis between current practices and industry best practices
- Look at a site purchasing strategy for managing energy cost
- Look at new technologies to further reduce energy consumption
 - Alternate fuels/power options
 - Wind/Solar/Geothermal
 - Biomass (wood chips and others)

Most Effective EM Methods and Tools

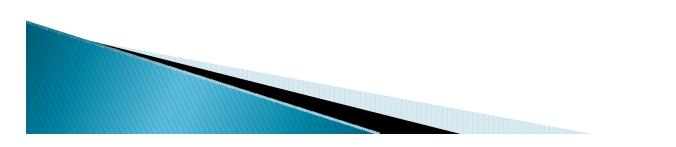
Most Effective EM Methods and Tools Summary

- Site process energy assessments or audits by both internal and external personnel
 - DOE conducts Process Heat or Steam System audits at no cost
 - o www1.eere.energy.gov/industry/saveenergynow/
- Process brain storming sessions
 - Internal reviews of energy intensive processes
- Department of Energy (DOE) publications & software tools
 - o www1.eere.energy.gov/industry/saveenergynow/
- American Chemistry Council Energy Efficiency Awards
 - Examples of Energy Management Programs/improvement opportunities


Most Effective EM Methods and Tools

Summary

- Internal generated "Best Practices" document
 - Internal and external sources
 - DOE Best Practices publications
 - o www1.eere.energy.gov/industry/informationcenter/
 - American Chemistry Council Energy Efficiency Awards
- Gap Analysis
 - Best Practices assessment of current versus industry
 - Process data current versus best demonstrated (KEV's)
 - Site rejected energy(heat) versus process needs
- Quarterly Energy Management Reviews with Management
 - Maintains momentum


- Energy Management Tracking Reports
 - Project opportunities benefits and status
 - Program screening based on benefits
 - Energy utilization by major product (KEV's)

Best Practices Example

Albemarle Best Practices Document Sections


- Leadership
- People and Behavior
- Financial Management
- Supply Management
- Operations and Maintenance
- Plant and Equipment
- Monitoring and reporting
- Achievement

Albemarle Best Practices Example: Plant and Equipment Section (Steam Trap Maintenance Program)

- Steam Trap Survey: minimum once per year
- Steam Trap Data Base: every trap should be identified, located, numbered, tagged with stainless steel tag and documented in the Steam trap data base
- Testing: Steam traps should be tested by using ultra sonic leak detection equipment along with infrared thermometer
- Steam trap selection: confirm steam trap selection/installation with manufacturer for excessive failure applications
- Audits: Include steam traps in weekly site walk around internal audits and conduct manufacturer audits at least every two years.
- Receiver vents should be monitored by the operating units and checked daily

Thank you for your time!

