

Rapid Thermal Processing (RTPTM): A Proven Pathway to Renewable Liquid Fuel

Monique Streff September 15, 2009

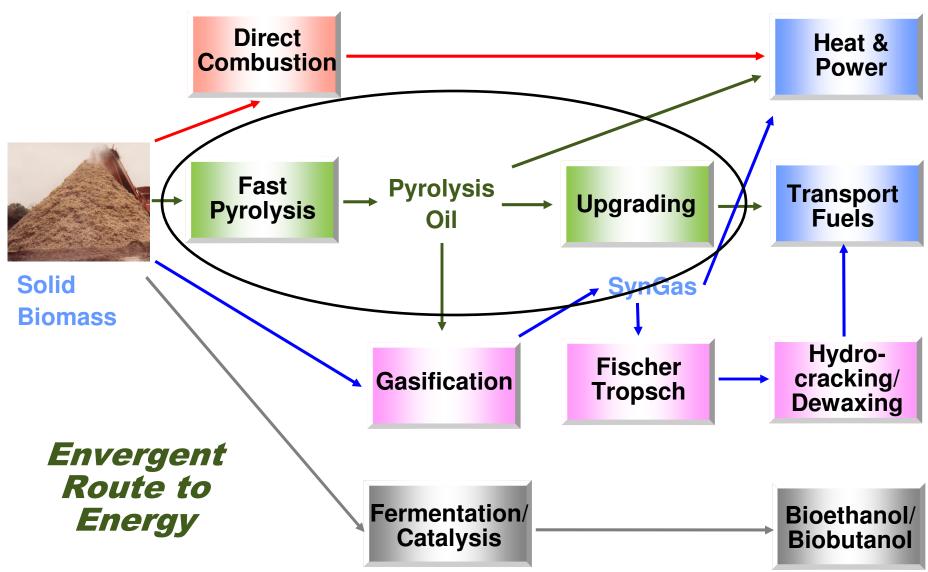
Agenda

- Introduction
- Rapid Thermal Processing (RTP™) Technology
- Applications
- Project Development
- Summary

Envergent Technologies LLC – UOP / Ensyn Joint Venture

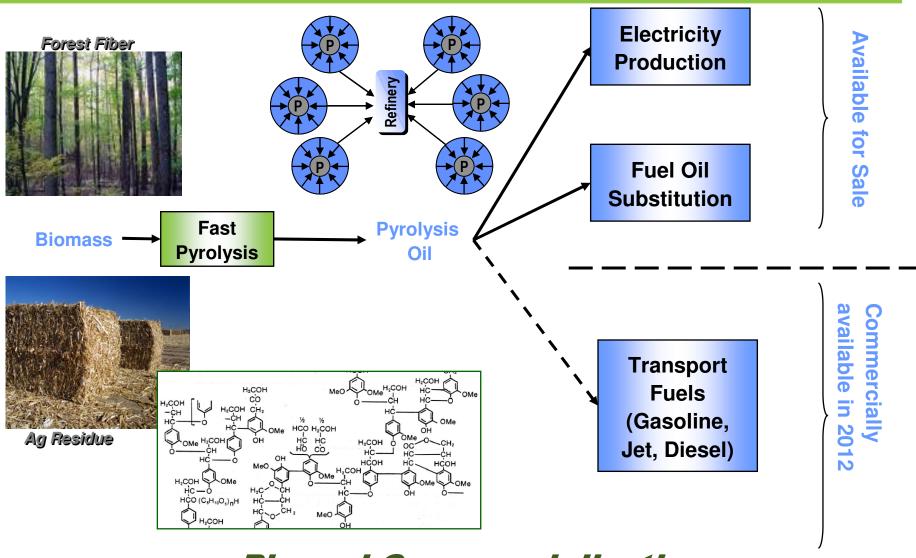
- Formed in October 2008
- Provides pyrolysis oil technology for fuel oil substitution and electricity generation
- Channel for UOP R&D program to upgrade pyrolysis oil to transportation fuels

- Leading process technology licensor~\$2 billion in sales, 3000 employees
- Co-inventor of FCC technology
- Modular process unit supplier
- Global reach via Honeywell & UOP sales channels

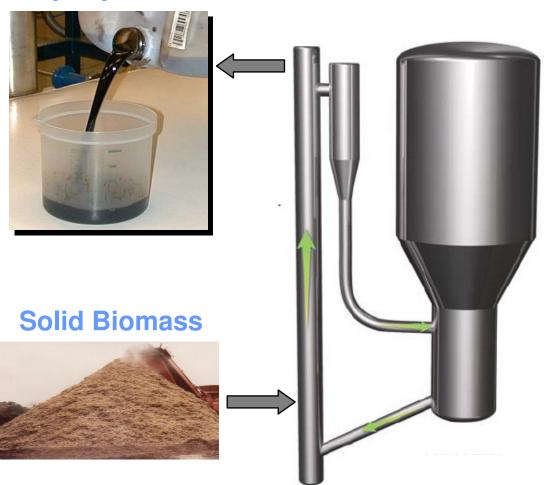


- Over twenty years of commercial fast pyrolysis operating experience
- Developers of innovative RTP[™] fast pyrolysis process
- Eight commercial RTP units designed and operated

Second Generation Renewable Energy Company – Global Reach


Lignocellulosic Biomass Processing Options

Pyrolysis Oil to Energy & Fuels Vision



Phased Commercialization

Rapid Thermal Processing (RTPTM) Technology

Pyrolysis Oil

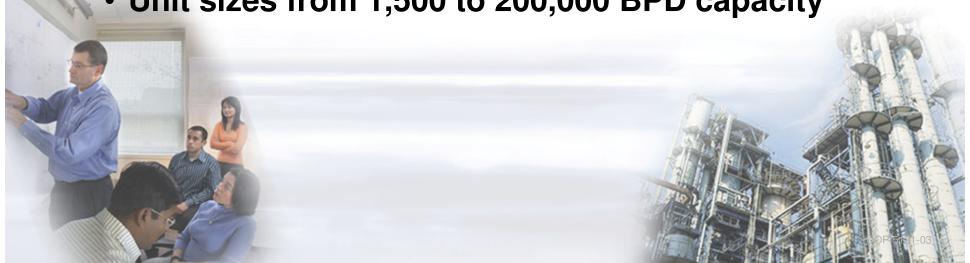
Commercially Proven Patented Technology

RTPTM Operating History & Commercial Experience

- Commercialized in the 1980's
- 8 units designed and operated in the US & Canada
- Continuous process with >90% availability

Plant	Year Built	Operating Capacity (Metric Tonnes Per Day)	Location
Manitowoc Chemical #1	1989	1	Manitowoc, WI, USA
Manitowoc RTP TM – 1	1993	30	Manitowoc, WI, USA
Rhinelander RTP TM – 1	1995	35	Rhinelander, WI, USA
Rhinelander Chemical #2	1995	2	Rhinelander, WI, USA
Rhinelander RTP™ – 2	2001	45	Rhinelander, WI, USA
Rhinelander Chemical #3	2003	1	Rhinelander, WI, USA
Petroleum Demo # 1	2005	300 barrels per day	Bakersfield, CA, USA
Renfrew RTP [™] – 1 (Owned and operated by Ensyn)	2007	100	Renfrew, Ontario, Canada

Note: design basis for wood based plants assumes feedstocks with 6wt% moisture content.


Significant Commercial Experience

UOP FCC Background

- UOP has been designing FCC units since the early 1940's – one of the co-inventors
- Licensed over 250 units more than 50% of world-wide capacity
- Achieved 60% share of competitive new unit licenses awarded since 1970
- More than 40 revamp engineering projects undertaken each year

Feedstock Sources

Forestry and Pulp and Paper

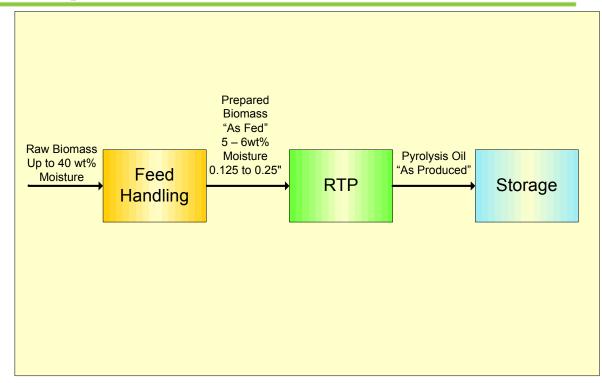
- Wood chips, sawdust, bark
- Lignin

Agricultural

- Residues corn stover, expended fruit bunches from palm (EFB), bagasse
- Purpose-grown energy crops miscanthus, elephant grass

Post-consumer

- Construction and Demolition Waste, Categories 1&2
- Municipal solid waste (future)
- DoE study 2005 > 1 billion ton per year available in United States alone



Cellulosic Feedstocks Widely Available

Feed Handling / Preparation

- Water is a heat sink
 - Dried to 5-6wt%
 moisture content for
 efficient RTPTM reactor
 operation
- Size impacts heat transfer
 - Biomass sized to 0.125 to 0.25"
- Capacity of unit expressed on bone dry feed basis
 - Zero water content

- Many suppliers of similar equipment in existing industry:
 - Pulp & Paper
 - Agricultural
 - Forest

Feed Preparation Is Critical For RTP Performance

RTPTM Product Yields

400 BDMTPD of Hardwood Whitewood

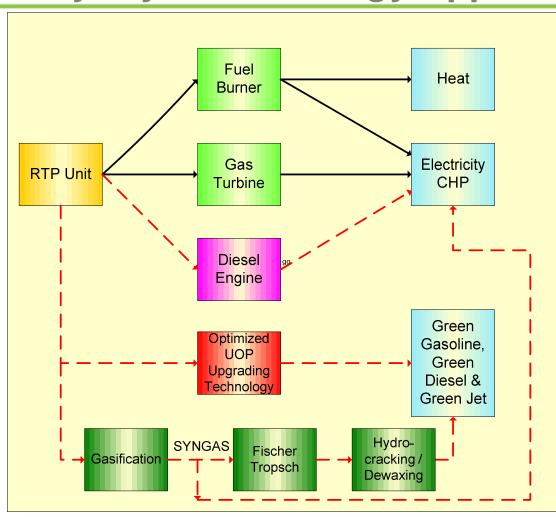
400 DDWITPD OI Haldwood Willewo			
Feed, wt%			
Hardwood Whitewood	100	Yields For Various Feeds	
Typical Product Yields, wt% Dry Feed		Biomass	Typical Pyrolysis Oil
Pyrolysis Oil	70	Feedstock Type	Yield, wt% of Dry Feedstock
By-Product Vapor	15	Hardwood	
Char	15	Hardwood	70 – 75
		Softwood	70 – 80
		Hardwood Bark	60 – 65
		Softwood Bark	55 – 65
		Corn Fiber	65 – 75
		Bagasse	70 – 75
		Waste Paper	60 – 80

Cellulosic Feedstock Flexible With High Yields of Pyrolysis Oil

RTPTM Pyrolysis Oil Properties

- Contains ~60% the energy content of crude-based fuel oils
- High viscosity and acidity
- ~40-50% oxygen content
- Pourable and transportable liquid fuel

Comparison of Heating Value of Pyrolysis Oil and Typical Fuels


Fuel	MJ / Litre	BTU / US Gallon
Methanol	17.5	62,500
Pyrolysis Oil (Wood)	21.0	75,500
Pyrolysis Oil (Bark)	22.7	81,500
Ethanol	23.5	84,000
Light Fuel Oil / Diesel	38.9	138,500

Suitable for Energy Applications

Pyrolysis Oil Energy Applications

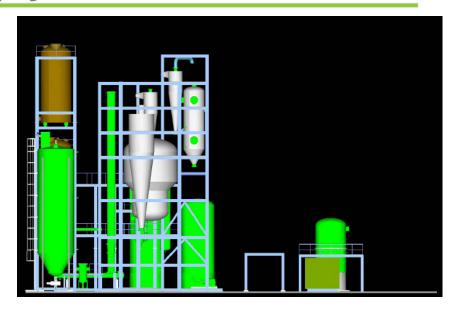
- Compatible with specialized turbines
- Specialized burner tips improve flame/burning
- Convert to steam to use existing infrastructure
- Use as a blend in diesel engines
- Upgradable to hydrocarbon fuels

Multiple Applications for Pyrolysis Oil, a Renewable Fuel Available Today

Pyrolysis Oil as Burner Fuel

- Energy densification/improved logistics and flexibility
- Relatively low emissions (NOx, SOx, ash)
- Consistent quality/improved operations
 - ASTM standard established last month
- Stainless steel piping, tankage and equipment required due to acidity
- Requires separate storage from fossil fuels

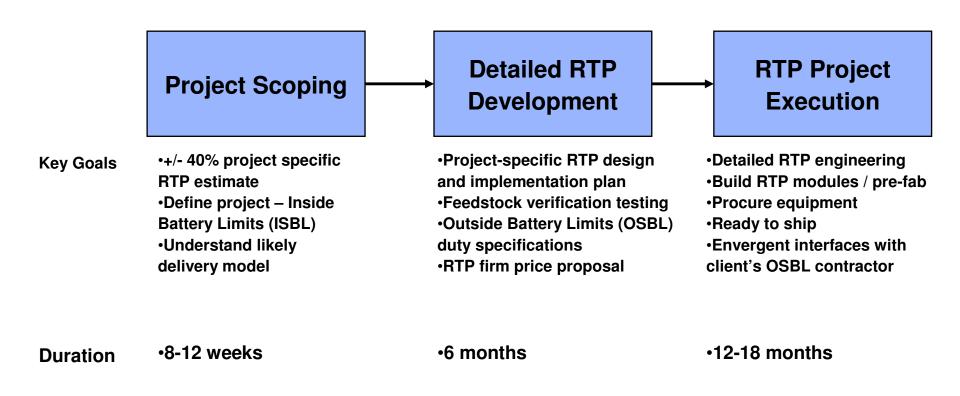
25-30% Lower Cost than #2 Fuel Oil on an Energy Basis


ASTM D7544, Standard Specification for Pyrolysis Liquid Biofuel

PROPERTY	VALUE	TEST METHOD
Gross Heat of Combustion, MJ/kg Point, °C	15 min	ASTM D240
Pyrolysis Solids Content, wt%	2.5 max	ASTM D7544, Annex I
Water Content, wt%	30 max	ASTM E203
Kinematic Viscosity, cSt @ 40 °C	125 max	ASTM D445
Density, kg/dm ³ @ 20 °C	1.1 – 1.3	ASTM D4052
Sulfur Content, wt%	0.05 max	ASTM 4294
Ash Content, wt%	0.25 max	ASTM 482
Flash Point, °C	45 min	ASTM D93, Procedure B
Pour Point, °C	-9 max	ASTM D97

Delivery & Scope of Supply

- Standard sized modular units offered
 - 100, 200, 400 and 1000 Bone Dry Metric Tons per Day (BDMTPD)
 - Design adjusted to meet site specific requirements
- Design based on hardwood whitewood
 - If alternate feedstock being processed, unit performance to be re-rated


Modular Delivery Provides Faster Execution and Higher Reliability

RTPTM Project Execution – Envergent Scope

Three-phase work process

- Develops project specific scope
- Enhances capital figures to reduce uncertainty

Equipment Delivery - Guaranteed Performance

RTPTM Project Benefits

Economics

 Economic solution for renewable energy

Competitive relative to fossil fuels

Leverages existing assets

 Provides alternate revenue stream

Environment & Social

- Reduction of greenhouse gases and emissions
- Waste disposal
- Minimum environmental Impact
- Agriculture development
- Employment

Technical

- Proven application
- Feedstock flexibility
- Minimal net utilities
- Storable product allows decoupling from end user

- Energy diversification
- Reduction of fossil energy requirements

Pyrolysis to Energy Now – Transport Fuels in 2012

RTPTM Summary

- Commercially proven technology: 8 units designed and operated
- Reliable operation with 90% on-line availability
- Designed to maximize pyrolysis oil yield, 70 wt% based on hardwood whitewood feed
- Cost competitive with fossil fuel oil
- Engineering and modular delivery by world-renowned industry leader
- Technology for upgrading to transportation fuels expected to be available in 2012

