Save Energy Now Tools and Resources

SPEAKER: BILL ORTHWEIN

Industrial Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

Did You Know...?

The U.S. manufacturing sector:

- Employs 12 million people
- Makes the highest contribution to GDP (12%)
- Supplies ~60% of U.S. exports, worth \$50 billion/month
- Spurs job creation and investment
- Every million dollars in energy cost savings has the potential to create approximately 16 – 17 new jobs.

Industry and Energy Use

 The U.S. manufacturing sector consumes more energy than any other portion of the economy. Industry represents approximately 32% of total U.S. energy consumption.

Reducing U.S. industrial energy intensity is essential

Progress Is Achievable: Energy Efficiency is the Simplest Approach

- Existing technologies *with an attractive internal rate of return* can cut the growth in global energy demand by half or more within 15 years.
 - -- Curbing Global Energy Demand Growth, McKinsey & Co., May 2007
- More than 10% of U.S. industry's energy use could be saved by more broadly adopting existing technologies that yield an internal rate of return greater than 10%.
 -- McKinsey, 2007
- Industries around the globe can cut CO₂ emissions 19 to 31% using *proven* technologies and practices.

-- International Energy Agency, 2007

National Initiative to Reduce Energy Use

Save Energy Now: An Industrial Sector National Initiative

- **GOAL:** Drive a 25% reduction in industrial energy intensity by 2020
 - The *Energy Policy Act of 2005* (EPAct) has mandated that 25 percent of energy be saved in 10 years. The *Save Energy Now* program was established to achieve these goals.
 - Encourages industry to voluntarily reduce its energy usage in a period of volatile energy prices and uncertain supplies by partnering with all U.S. manufacturing facilities.
 - Creates momentum to significantly improve energy efficiency practices throughout the industrial sector.
 - Utilizes interagency collaborations and relationship with industry partners to fulfill this goal.

Energy Intensity Reduction

Save Energy Now Strategy

Partner with U.S. industry, utilities, states, universities and other stakeholders to help manufacturers save energy and money, increase productivity, and reduce environmental impacts by:

- Accelerating the adoption of energy-efficient technologies and practices
- Conducting vigorous technology R&D
- Supporting commercialization of emerging technologies
- Providing plants with access to proven technologies, energy assessments, software tools, and other resources
- Promoting energy and carbon management throughout industry

PROFITABLE GROWTH A New Story for U.S. Manufacturing Industrial Technologies Program (ITP)

ITP R&D Program Areas

Industry Specific Applications

- Aluminum
- Chemicals
- Forest and Paper Products
- Metal Casting
- Steel
- Information Technology

Advanced technologies for specific, energy-intensive industries

Crosscutting Technologies

- Materials, Sensors, and Combustion
- Energy-Intensive Process R&D
 Nanomanufacturing & Other
 Interagency Manufacturing R&D
- Fuel and Feedstock Flexibility
- Distributed Energy (CHP and Reciprocating Engines)
- Inventions & Innovations

Crosscutting technologies for diverse, energy-intensive manufacturing processes

Technology R&D: Focus on Energy Efficiency

Industrial Reaction & Separation

High-Temperature Processing

Develop technologies for efficient reaction and separation processes

Develop energy-efficient, high-temperature process technologies for producing metals and non-metallic minerals

Energy Conversion Systems

Develop high-efficiency steam generation and combustion technologies and improved energy recovery technologies

Fabrication & Infrastructure

Develop energy-efficient technologies for making near net-shape finished products from basic materials

ITP Technology Highlights

PROFITABLE GROWTH A New Story for U.S. Manufacturing

Modular equipment that enables more flexible operations while achieving enormous energy savings Isothermal Melting (ITM) Process

- Continuous flow system with immersion heaters that convert electricity to melting energy with 98% efficiency
 - o 50% less energy consumption than traditional furnace
 - o Zero in-plant emissions
 - April 2006 ribbon-cutting ceremony highlighted scale-up demonstration at a General Motors fac

SuperBoiler

- Gas-fired package boiler incorporating innovative concepts in combustion, heat transfer, heat recovery, and control components
 - Capable of achieving energy efficiencies <u>>94%</u>
 - Field evaluation of firetube boiler initiated in 2006

Next-Generation Manufacturing

Nanomanufacturing:

Develop efficient techniques and manufacturing processes for **nano**enabled products

Enable mass production and application of nanotechnologies that could transform industrial processes

Next-Generation Concepts:

Manufacturing

Improve yield

Reduce waste

Improve energy efficiency throughout the supply chain

Reduce environmental impacts

Save Energy Now Services

Goal: Drive a 25% reduction in industrial energy intensity in 10 years

Information

Information Center

Website

Tip Sheets

Webcasts

Emerging

Case studies

- Process Heating
- Steam Systems
- Plant Energy Profiler
- Motors & Pumps
- Fans

Tools

Standards

Plant
 Certification

<u>Training</u>

- Basic
- Advanced
 - Qualified Specialist

Technologies

Assessments

- Energy Savings Assessments
- Industrial Assessment Centers

DOE Power Based Software Decision Support Tools Available via the Website

- Motor Master + Assists in energy-efficient motor selection and management. (International)
- Pumping System
 Assessment

Tool Assesses the efficiency of pumping system operations.

 Fan System Assessment Tool quantifies potential benefits of a more optimally configured fan system

- Air Master + Provides comprehensive information on assessing compressed air systems.
- Industrial Facilities Tool Assesses HVAC, Lighting .. upgrade opportunities.
- Chilled Water System Assessment Tool Assesses the efficiency of a chilled water system.

DOE <u>Fuel Based</u> Software Decision Support Tools Available via the Website

Steam System Scoping

Tool Profiles and grades large steam system operations/management.

Steam System Assessment Tool

Assesses potential benefits of specific steam-system improvements.

3EPlus Insulation Assessment Tool

Calculates most economical thickness of insulation for a variety of operating conditions.

- **Plant Energy Profiler** profiles plant energy supply along consumption streams and identifies energy savings opportunities
- Process Heating Assessment and Survey Tool Assesses energy use in furnaces, ovens and kilns along with performance improvements
- Energy Management Tool Suite integrates ITP's technical solutions system based tools along with additional Energy Management Best Practice support capabilities

Steam System Assessment Tool (SSAT)

• PURPOSE:

 Demonstrate the magnitude of energy, cost, and emission savings related to specific steam system improvement opportunities

• AUDIENCE:

 Engineers involved with operation and/or improvement of steam systems

You Can Use SSAT To Evaluate These Key Steam Improvement Initiatives

- Real Cost Of Steam
- Steam Quality
- Boiler Efficiency
- Alternative Fuels
- Cogeneration
 Opportunities
- Steam Turbines vs PRVs
- Boiler Blowdown

- Condensate Recovery
- Steam Trap Operating Efficiency
- Heat Recovery
- Vent Steam
- Steam Leaks
- Insulation Efficiency
- Emissions Calculations

🔊 E	le <u>E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>T</u> o	ools <u>D</u> ata <u>W</u> indow <u>H</u> elp <u>S</u> SAT				_ & ×								
I 🗅 📬	F 🖬 🙈 🔁 🖪 🖪 🖓 👗 📭	- 2 @ · · · · · · · · ·	AL ZL 🛍 🚜 100% - 🛛 _	Arial 👻	10 • B Z	u ≣ ≣ ⊒ ⊡ • »								
	H2 \checkmark f_{x}					• • •								
A	В	С	D	E F	G	н								
1						^ _								
2	Steam System Assessment Tool													
3		3 Head	er Model											
	Poculte Summary													
4	Results Summary													
6	SSAT Default 3 Header Model													
7	Model Status : OK													
8	Cost Summary (\$ '000s/yr)	Current Operation	After Projects	Reduct	ion									
9	Power Cost	2,000	2,197	-197	-9.9%									
10	Fuel Cost	24,178	22,051	2,126	8.8%									
11	Make-Up Water Cost	453	234	220	48.4%									
12	Total Cost (in \$ '000s/yr)	26,631	24,483	2,148	8.1%									
13														
14				D										
15	On-Site Emissions	Current Operation	After Projects	Reduct	ion									
10	CO2 Emissions	466135 KID/yr	443363 KID/yr	42752 KID/yr	0.0%									
17	SOX Emissions	U KID/yr	U KID/yr	U KID/yr	N/A									
18	NOX Emissions	962 kib/yr	878 KID/yr	85 KID/yr	8.8%									
20	Power Station Emissions		Reduction After Projects	Total Red	uction									
21	CO2 Emissions		-6201 klb/yr	36551 klb/vr	(1 -3)									
22	SOx Emissions		-19 klb/vr	-19 klb/vr										
23	NOx Emissions		-14 klb/vr	71 klb/vr	1240									
24	Note - Calculates the impact of the chan	nge in site power import on emissions from	an external power station. Total reduction	n values are for site + por	wer station									
25														
26	Utility Balance	Current Operation	After Projects	Reduct	ion									
27	Power Generation	13883 kW	13389 kW	-	10-10									
28	Power Import	5000 kW	5494 kW	-494 kW	-9.9%									
29	Total Site Electrical Demand	18883 kW	18883 kW	-										
30														
31	Boiler Duty	523.0 MMBtu/h	477.0 MMBtu/h	46.0 MMBtu/h	8.8%									
32	Fuel Type	Natural Gas	Natural Gas	-	10.200	_								
33	Fuel Consumption	522874.9 s cu.ft/h	476891.9 s cu.ft/h	-										
34	Boiler Steam Flow	416.5 klb/h	402.3 klb/h	14.3 klb/h	3.4%									
35		6.70	6.70											
36	Fuel Cost (in \$/MMBtu)	5.78	5.78	-	00									
#	📍 Start 💧 America Online 🕼 Training-Auditing 🔲 Microsoft PowerPoint 🕅 Microsoft Excel - SSA 🖉 🛈 🕞 🏔 🔍 🔍 🗖 🗖 🔘 6:33 PM													

Process Heating Assessment and Survey Tool (PHAST)

Process Heating Assessment and Survey Tool (PHAST)

What is PHAST?

- A tool that can be used to:
- Estimate annual energy use and energy cost for furnaces and boilers in a plant
- Perform detail heat balance and energy use analysis that identifies areas of energy use, efficiency and energy losses for a furnace
- Perform "what-if" analysis for possible energy reduction and efficiency improvements through changes in operation, maintenance and retrofits of components/systems
- Obtain information on energy saving methods and identify additional resources

Plant Energy Use and Cost Distribution Report*

The report shows

- Estimated annual energy use and estimate annual cost of energy for heating equipment (furnaces, ovens etc.)
- List of heating equipment and % of total energy cost used for each equipment in order of annual cost of energy used.
- * for the Surveyed Process Heating Equipment

Furnace Heat Balance Energy Use – Losses Distribution

The report shows

Analysis of energy used in various parts of a furnace under a given operating condition.

HAST Version 2.0 - US U Information	Inits	-
	🖉 Furnace Data	
	File Help	
	U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable and affordable	
	Plant Name Test Petroleum plant - US Furnace Name Cat Cracker	
	<u>Other Losses</u>	
	Water - Cooling Losses Wall Losses Opening Losses	
	Load/Charge Material Fixtures, Irays, Baskets etc. Losses Atmosphere Losses	
	Select Type O Solid O Gas	
	Type of Material New Gasoline stock	
	Charge (Liquid)-Feed Rate (lb/hr) 55000 55000	
	Initial Temp. (Degree F) 325 325	
	Discharge Temp. (Degree F) 750 750	
	Charge Liquid Vaporized (% of 100 100 100 100 100 100 100 100 100 10	
	Charge Reacted (%) 0 0	
	Heat of Reaction (Btu/lb) 100 Endothermic I 100 Endothermic I	
	Additional Heat Required (Btu/hr)	
	Heat Required (Btu/hr) 22,341,000 22,341,000	
	Comments	
	Current Net Heat Required (Btu/hr) 24,075,899 🗊 Furnace Summary 🕼 Enter/Edit Current Data	
	Modified Net Heat Required (Btu/hr) 23,696,425	
start 🗎 🛕 America (Dnline 🏠 Training-Auditing 🖪 Microsoft PowerPoi 🛃 PHAST Version 2.0 🛃 Furnace Data 🔇	20 🗖 🕈 י

Tool Metrics

PROFITABLE GROWTH

2006, 2007, 2008 and 2009 Annual Saving Opportunities

	Identified Annual Savings			Implemented Annual Savings			
System Area	# of completed ESA's	Source Energy Savings Upgrades	Identified Cost Savings (\$)	Implemented Source Energy Savings (TBtu)	Implemented Cost Savings (\$)	Implemented CO2 Savings (metric tons)	
Compressed Air	160	3.84	\$23,196,826	0.95	\$4,933,793	55,448	
Fans	43	7.93	\$46,561,260	0.09	\$498,984	5,001	
Process Heating	241	49.74	\$336,449,703	5.6	\$42,882,228	300,240	
Pumps	88	3.23	\$17,518,946	0.17	\$936,696	9,768	
Steam	329	80.49	\$649,726,971	21.01	\$113,819,232	1,566,705	
Multi System Paper	21	7.98	\$55,637,900	0.47	\$2,172,294	8,739	
Total	882	153.2	\$1,129,091,607	28.3	\$165,243,227	1,945,901	