ICI Boilers

OTC SAS Committee Meeting February 4, 2009

Why control ICI boilers?

- Important source of SO₂ and NO_x emissions
- Cost-effective emission reductions
 achievable
- Emission reductions provide regional and local air quality benefits (needed for ozone, PM_{2.5}, and haze)

Overview

- Background: review State Collaborative process and emissions inventories
- Workgroup recommendations
 - Performance-based emission limitations
 - Emissions reporting
 - Combustion tuning
- Analysis of recommended emission limits
 - Costs
 - Emissions reduction
 - Air quality impact

State Collaborative Process

- December 2005 Meeting
 - NE and MW Commissioners/Directors met to discuss coordinating control programs to meet current NAAQS, and preparing for new, tighter NAAQS
 - Agreed to explore several control measures, including
 - One consistent environmentally-sensitive formulated gasoline
 - Consistent standards for a range of consumer products
 - ICI boilers
- Regular Conference Calls
 - On-going discussions over past couple years
 - Formed workgroup with staff from NE and MW states to prepare a recommendation on ICI boilers
 - Agreed to send letter to EPA

State Collaborative Process

- Letter to EPA (Indiana November 15, 2007, 16 other states - June 11, 2008)
 - Asks for a dialogue to address multi-pollutant air quality problems in eastern U.S.
 - Dialogue to include identifying strategies for achieving effective, equitable, and necessary emission reductions (e.g., 3rd phase of reductions for EGUs, and controls for existing ICI boilers)

EPA's NEI: NOx Emissions

By Size and Area/Point/Fuel (2002)

Note: EPA's area source emission estimates are uncertainTotal Point:679,000Note: EPA's area source emission estimates are uncertainTotal Area:712,000Grand Total:1,391,000

EPA's NEI: NOx Emissions

By RPO and Area/Point/Fuel (2002)

	Total Point:	679,000
Note: EPA's area source emission estimates are uncertain	Total Area:	712,000
	Grand Total:	1,391,000

EPA's NEI: SO₂ Emissions

By Size and Area/Point/Fuel Type (2002)

Note: EPA's area source emission estimates are uncertainTotal Point:970,000Note: EPA's area source emission estimates are uncertainTotal Area:1,037,000Grand Total:2,007,000

EPA's NEI: SO₂ Emissions

By RPO and Area/Point/Fuel Type (2002)

Note: EPA's area source emission estimates are uncertainTotal Point:970,000Note: EPA's area source emission estimates are uncertainTotal Area:1,037,000Grand Total:2,007,000

Regional Differences

 LADCO States - Coal-fired boilers and boilers > 100 MMBTU/hr important

– Coal-firing: 60% NOx, 90% SO $_2$

– Large Boilers: 86% NOx, 93% SO₂

- OTC States Oil- and gas-fired boilers and boilers < 100 MMBTU/hr important
 - Oil/gas-firing: 72% NOx, 43% SO2 emissions
 - Small Boilers: 52% NOx (oil), 50% NOX (gas)
 - Area Sources (smaller boilers): 66% emissions

Control Options

	NOx				SO2	
Option	Gas	Oil	Coal	Gas	Oil	Coal
Combustion Modification	Tune-ups (15%)	Tune-ups (15%)	Tune-ups (15%)			
	LNB (50%)	LNB (50%)	LNB (50%)			
	LNB + FGR (60%)	LNB + FGR (60%)	LNB + FGR (60%)			
	ULNB (75%)	ULNB (75%)	ULNB (75%)			
Fuel Treatment				COG Desulf. (95%)	Lower S Oil (75-95%)	
Post-Comb. Controls	SNCR (45%)	SNCR (45%)	SNCR (45%)			Dry Sorbent Inject. (40%)
	SCR (85%)	SCR (85%)	SCR (85%)			Dry FGD (85-95%)
						Wet FGD (85-95%)

Workgroup Recommendation

- 1. Emissions limitations (performance-based)
 - For NOx and SO2 on certain *boiler sizes* and *fuel types*, based on available inventories and/or recent state actions
- 2. Emissions reporting for units \geq 25 mmBtu/hr
 - Total annual consumption by fuel type
 - Results of any fuel analyses
 - Results of emission measurements
- 3. Combustion tuning (units > 25 MMBTU/hr)
 - Performed on annual basis

Workgroup's NOx Emission Limitations

		Boiler Size (MMBTU/Hour)			
Fuel Type		< 50	50-100	> 100	
Gaseous Fuels (natural gas, refinery gas, blast	Phase I	Comb. Tuning	Comb. Tuning	0.10 or 50%	
furnace gas, coke oven gas)	Phase II	0.05 - 0.10 or 50%	0.05 - 0.10 or 60%	0.05 - 0.10 or 60%	
Distillate Oil (#1.#2)	Phase I	Comb. Tuning	Comb. Tuning	0.10 or 50%	
	Phase II	0.08 - 0.10 or 50%	0.08 - 0.10 or 60%	0.08 - 0.10 or 60%	
Residual Oil (#4.#5.#6)	Phase I	Comb. Tuning	Comb. Tuning	0.20 or 60%	
	Phase II	0.20 or 50%	0.20 or 60%	0.20 or 70%	
Coal - Wall	Phase I			0.30	
	Phase II			0.10 - 0.14	
Coal - Tangential	Phase I			0.30	
	Phase II			0.10 - 0.12	
Coal - Cyclone	Phase I			0.19	
	Phase II			0.19	
Coal - Stoker	Phase I		Comb. Tuning	0.30	
Coal - Stoker	Phase II		0.30	0.22	
Coal - FBC	Phase I		Comb. Tuning	0.15	
	Phase II		0.08	0.08	
Wood and Non-Eossil Solid Eucl	Phase I		Comb. Tuning	0.30	
	Phase II		0.30	0.22	

Workgroup's SO2 Emission Limitations

		Boiler Size (MMBtu/Hour)				
Fuel Type		< 50	50-100	100-250	> 250	
Gaseous Fuels (coke	Phase I			Treated COG with 95%S compounds removed	Treated COG with 95%S compounds removed	
oven gas)	Phase I			Treated COG with 95%S compounds removed	Treated COG with 95%S compounds removed	
	Phase I	0.05%S (500ppm), or 0.05 lb/MMBTU	0.05%S (500ppm), or 0.05 lb/MMBTU	0.05%S (500ppm), or 0.05 lb/MMBTU	0.05%S (500ppm), or 0.05 lb/MMBTU	
Distillato	Phase II Northeast	Further reduce Sulfur content	Further reduce Sulfur content	Further reduce Sulfur content	Further reduce Sulfur content	
Oil (#1, #2)	States Inner Zone	to 15ppm by 2016	to 15ppm by 2016	to 15ppm by 2016	to 15ppm by 2016	
	Phase II	Further reduce Sulfur	Further reduce Sulfur	Further reduce Sulfur	Further reduce Sulfur	
	Elsewhere	to 15ppm by 2018	content to 15ppm by 2018	to 15ppm by 2018	content to 15ppm by 2018	
	Phase I					
	Dhara	0.5%S (or 0.54 lb/MMBTU)	0.5%S (or 0.54 lb/MMBTU)	0.5%S (or 0.54 lb/MMBTU)	0.5%S (or 0.54 lb/MMBTU)	
	Northeast	#4 Fuel Oil	#4 Fuel Oil	#4 Fuel Oil	#4 Fuel Oil	
	States	0.25%S no later than 2012	0.25%S no later than 2012	0.25%S no later than 2012	0.25%S no later than 2012	
Residual Oil (#4, 2 #5, #6)	Inner Zone	#6 Fuel Oll 0.3-0.5% no later than 2012	#6 Fuel Oil 0.3-0.5%S no later than 2012	#6 Fuel Oil 0.3-0.5%S no later than 2012	#6 Fuel Oil 0.3-0.5%S no later than 2012	
	Phase II Elsewhere	#4 Fuel Oil 0.25-0.5%S no later than 2018	#4 Fuel Oil 0.25-0.5%S no later than 2018	#4 Fuel Oil 0.25-0.5%S no later than 2018	#4 Fuel Oil 0.25-0.5%S no later than 2018	
		#6 Fuel Oil 0.5%S no later than 2018	#6 Fuel Oil 0.5%S no later than 2018	#6 Fuel Oil 0.5%S no later than 2018	#6 Fuel Oil 0.5%S no later than 2018	
Coal (and other	Phase I		2.0 lb/MMBtu or 30% reduction*	1.2 lb/MMBtu or 85% reduction*	0.25 lb/MMBtu or 85% reduction*	
solid fuels)	Phase II		2.0 lb/MMBtu or 30% reduction*	0.25 lb/MMBTU or 85% reduction*	0.25 lb/MMBTU or 85% reduction*	
			* = % reduction based on uncontrolled emissions in base year (2002)			

Analysis of Recommended Emission Limitations

- Costs
- Emissions Reduction
- Air Quality Impact

Costs: Background Documents

- Numerous background documents were reviewed (EPA, DOE, OTAG, NACAA*, NESCAUM, LADCO, Federal & State regulations, etc.)
- Control Cost Methodology derived mainly from:
 - "Midwest RPO BART Engineering Analysis" MACTEC, March 30, 2005
 - "ACT Document NOx Emissions from ICI Boilers", EPA 453/R-94-022, March 1994

Types of NOx Control Equipment Analyzed

- Low NOx Burners (LNB)
- Low NOx Burners plus Flue Gas Recirculation (LNB+FGR)
- Low NOx Burners plus Selective Non-Catalytic Reduction (LNB+SNCR)
- Selective Non-Catalytic Reduction (SNCR)
- Selective Catalytic Reduction (SCR)

Types of SO₂ Control Equipment Analyzed

- Dry Flue Gas De-Sulfurization (Dry FGD)
- Wet Flue Gas De-Sulfurization (Wet FGD)

Cost Effectiveness: NO_x

Cost Effectiveness: SO₂

Emission Reductions: NO_x

Emission Reductions: SO₂

Air Quality Impact

Note: decreases in urban nonattainment areas are on the order of 0.3 ug/m³ (annual) and 1 ug/m³ (daily)

Next Steps

- Complete documentation for recommendation (Technical Support Document)
- Transmit recommendation to EPA
- Meet with stakeholders
- Work with EPA
 - Coordination on boiler MACT
 - Support EPA rulemaking

Bonus Material

Data Sources of NOx & SO₂ Control Cost Estimates

- Literature Refers to data taken from NESCAUM report "Applicability and Feasibility of NOx, SO₂ and PM Emission Control Technologies for ICI Boilers", November 2008, Executive Summary, Table ES-1.
- MACTEC 2008 Refers to data derived using the MACTEC methodology with corrections and assumptions developed by the OTC/LADCO ICI Boiler Workgroup.
- Modified CUECost Refers to the data taken from NESCAUM report "Applicability and Feasibility of NOx, SO₂ and PM Emission Control Technologies for ICI Boilers", November 2008, Chapter 5, Tables 5-4 and 5-5.

Cost Estimates for NOx Control Technology Options (\$/ton NOx Removed)

			Boiler Size	
Control Technology	Fuel Type	Cost Method	100 MMBTU/hr	250 MMBTU/hr
		Literature ¹	\$750	- \$7,500
Low NOx Burners - Gas	Gas	MACTEC 2008 ²	\$5,460 - \$21,800	\$2,190 - \$8,720
Low Iton Builders Cus	Gas	Modified CUECost ³	\$5,715	\$4,151
		Literature ¹	\$750 - \$7,500	
Low NOx Burners - Dist Oil	Distillate Oil	MACTEC 2008 ²		
Low Work Burners' Dist. On			\$5,460 - \$21,800	\$2,190 - \$8,720
		Literature ¹	\$750 - \$7,500	
Low NOx Burners - Res. Oil	Residual Oil	MACTEC 2008 ²	\$2,730 - \$10,900	\$1,090 - \$4,360
		Modified CUECost ³	\$4,559	\$3,305
		Literature ¹	\$750 - \$7,500	
Low NOx Burners - Coal	Coal	MACTEC 2008 ²	\$1,560 - \$6,230	\$624 - \$2,490
		Modified CUECost ³	\$3,155	\$2,290

1. Literature values are in 2006\$.

2. MACTEC 2008 values are in 2008\$ for a 66% capacity factor at 8,760 hours/year.

3. Modified CUECost values are in 2006\$ for a 66% capacity factor at 8,760 hours/year.

Cost Estimates for NOx Control Technology Options (\$/ton NOx Removed)

		Boil		er Size
Control Technology	Fuel Type	Cost Method	100 MMBTU/hr	250 MMBTU/hr
		Literature ¹	\$1,300 - \$3,700	
SNCR - Coal (Wall-fired)	Coal	MACTEC 2008 ²	\$4,260 - \$5,620	\$2,480 - \$3,030
		Modified CUECost ³	\$4,817	\$2,422
		Literature ¹	\$2,000 - \$14,400	
SCR - Coal (Wall-Fired)	Coal	MACTEC 2008 ²	\$3,430 - \$11,600	\$1,590 - \$4,860
Sere Cour (Wull Flied)		Modified CUECost ³	\$6,668	\$4,763

1. Literature values are in 2006\$.

2. MACTEC 2008 values are in 2008\$ for a 66% capacity factor at 8,760 hours/year.

3. Modified CUECost values are in 2006\$ for a 66% capacity factor at 8,760 hours/year.

Cost Estimates for SO₂ Control Technology Options (\$/ton SO₂ Removed)

			Boiler Size		
Control lechnology	Fuel Type Cost Method		100 MMBTU/hr	250 MMBTU/hr	
Fuel Switch 0.3%S to 0.05%S	Distillate Oil	Price Differential ¹	\$1,200 -	\$2,000	
Fuel Switch 1.0%S to 0.5% S	Residual Oil	Price Differential ¹	\$1,900 - \$3,800		
		Literature ²	erature ² \$1,600 - \$5,		
Dry FGD – Coal	Coal	MACTEC 2008 ³	\$1,590 - \$7,690	\$1,480 - \$4,010	
	Cour	Modified CUECost ⁴	\$7,909	\$3,694	
		Literature ²	\$1,900 - \$5,200		
Wet FGD (Wall-Fired)	Coal	MACTEC 2008 ³	\$1,650 - \$7,510	\$1,400 - \$3,830	
······ = 22 (······ = 1.00)		Modified CUECost ⁴	\$9,547	\$4,427	

1. Price Differential values are in 2008\$ for a 66% capacity factor at 8,760 hours/year.

Price differential between 0.3%S and 0.05%S distillate oil ranged from 2.1 to 3.5 cents per gallon

Price differential between 1.0%S and 0.5%S residual oil ranged from 7.5 to 15.0 cents per gallon

2. Literature values are in 2006\$.

3. MACTEC 2008 values are in 2008\$ for a 66% capacity factor at 8,760 hours/year.

4. Modified CUECost values are in 2006\$ for a 66% capacity factor at 8,760 hours/year.