

Boiler Efficiency Software Demo

ENERGY

Jimmy D Kumana Kumana & Associates Houston, Montreal, Dammam DOE Steam BP Mtg, Houston (5-20-08)

Presentation Outline

- Background
- Prototype demo
- Software development issues
- Q & A

Outline

Background

- Prototype demo
- Software development issues
- Q & A

Methodology Issues . . .

ASME (Boiler only)

- Heat balance
- Heat Loss
- Boiler only vs Steam Gen System
- HHV vs LHV
- Point efficiency vs Full range curve
- What about multiple pr. levels ?

Definition of Efficiency

η = TOTAL USEFUL OUTPUTS TOTAL ENERGY INPUTS

In numerator, the term USEFUL is critical
In denominator, the term TOTAL is critical
Units of measure must be CONSISTENT

ASME Efficiency, heat loss method

 Losses = stack gas, unburned, radiant, convective
 Boiler BD and leaks are not included in losses; therefore effectively treated as a Useful Outputs

ASME heat loss method, HHV, point η

Energy outputs from Boiler	Considered	Incl as Useful
Steam (assume single pr level)		
Stack gas - sensible heat		X
Stack gas - latent heat		X
Stack gas – unburned fuel loss		X
Boiler blowdown	X	
Convective heat loss to atmos		X
Radiant heat loss to atmos		X
Leaks	X	· · · · · · · · · · · · · · · · · · ·

Do you agree that Boiler BD and Leaks are USEFUL OUPUTS ?

ASME heat loss method, HHV, point η

Energy Inputs to Boiler	Considered	Should Incl ?
Heat of combustion (HHV)		
Parasitic steam use in De-aerator	x	
Sensible heat of fuel	x	Y
Sensible heat of combustion air	x	
Sensible heat of BFW (to econ)	X	
BFW treatment + pumping power	x	
Air supply fan power	X	
Boiler control system power	X	
Boiler building HVAC + lights	X	

System vs Boiler

Outline

Background

- Prototype demo
- Software development issues
- Q & A

Screen shots - 1 (Fuel, eg. gas)

Fuel =	mixed hydrocarbon gases with composition as below										Stoich
		atoms p	oer mole						HHV	LHV	oxygen
	MW	С	Н	lb/scf	scf/lb	Vol %	lb/h	mol/h	Btu/scf	Btu/scf	mol/h
Inerts	36	0	0	0.0950	10.5	4.3	1470	40.8	0	0	0
CO	28.01	1	0	0.0739	13.5	0.2	53	1.9	321	321	2
H2	2.016	0	2	0.0053	188.0	0.5	10	4.7	324	274	2
CH4	16.04	1	4	0.0423	23.6	84.5	12874	802.6	1010	911	1605
C2H6	30.07	2	6	0.0793	12.6	8.0	2285	76.0	1769	1622	266
СзНа	44.1	3	8	0.1164	8.6	2.0	838	19.0	2516	2318	95
C4H10	58.12	4	10	0.1534	6.5	0.5	276	4.7	3255	3015	31
C5H12	72.15	5	12	0.190	5.3	0.0	0	0.0	3978	3682	0
					20.2	100.0	17806	949.9	1064	963	2001
HH∨ repor	ted by Lai	o Analγsi	s	1060	Btu/scf		37432	Btu/nm3	(HHV)		
Deviation f	rom calcu	lated valu	e =	-0.4	%	OK					
I PARA		17 Parto	The second	- The Part	STATISTICS.	行行的原气			5 0 S C		
the states the											
							ured valu	ie (input)			
A DECEMBER OF THE	321 iteration parameter										
				45C decign peremter (input)							
					4:	Juesiyi	n haranır	er (mpar			
	Numana &										11
Deviation f	Ted by Lai rom calcu Kumana & Associate	C Analysi lated valu	s ie = OLOR C	ODES:	ыц/scf % 12 32 4	OK 23 meas 21 iterati 56 desig	ured valu on paran n paramt	e (input) neter er (input)	(HHV)		11

Screen shots - 2 (mat bal calcs)

Ambient (basis) temp	80	F		Stm ger	n rate (tria	al)	283.9	Klb/h	
Fuel Gas firing rate	6000	scfm (plar	nt data)	Calculated Stm Gen			284.3	Klb/h	
	17806	lb/h		Boiler steam gen capacity			375	Klb/h	
Gas molecular weight	18.7	lb/mole					188	TPH	
Stoichiometric air (dry)	9.96	scf/scf ga	s	Full-load	Full-load heat input (fuel)		506	MMBtu/h	
	15.41	lb/lb gas		Boiler op	erating loa	ad	76	%	
Relative Humidity of air	54	%					142	TPH	OK
Water vapor partial press	0.51	psia		Steam p	ressure		625	psig	
Moisture content	1.92	lb H2O/10	O lb dry air				640	psia	
Measured oxygen in FG	3.03	%		Steam s	at temp		493	F	
Calc Oxygen in fluegas	3.03	%		Steam superheat		235	F		
Measured CO in flue gas	400	ppm		Steam temp (actual)		728	F		
Excess air	16.0%			Sat steam enthalpy		1201	Btu/lb		
Actual air flow	318.3	Klb/h (dry	basis)	Cp of superheated steam		0.6944	Btu/lb-F		
Water vapor in supply air	6.1	Klb/h		Superhe	ated stm e	enthalpy	1364	Btu/lb	
Air preheating	0	F		BFW flov	N		285.9	Klb/h	
Air supply temp	80	F		BFW ter	np		308	F	OK
Flue gas flow (dry)	336.1	Klb/h		BFW ent	thalpy		278	Btu/lb	
Water of combustion	34.8	Klb/h		Blowdow	Blowdown, % of steam		0.7	%	
Flue gas temp, F	400	F		Blowdown enthalpy		480	Btu/lb		
water vapor enthalpy	1241	Btu/lb							
Combustibles in Flue Gas	600	ppm 📘							
Unburned fuel	0.21	%							

Screen shots - 3 (heat loss calcs)

					E	3oiler dim	ensions, f	ft	
						Height	60		
Wall surface material 1		Use 1 for metal, and 2 for brick				Length	40		
Wind velocity	ft/sec				Width	25			
Boiler surface area	ft2 (vertical faces	only)						F	
Convective Coeff (still air)	tive Coeff (still air) 0.98 Btu/ft2-h-F Boiler wall temp			140	F				
Convective losses	0.5	MMBtu/h			Amb temp in boilerhouse			97	F
					Temp diff	f vs ambie	ent	43	
Estimation of Radiative losse	<u>s:</u>								
Emissivity of boiler walls: 0.9				Number of Openings in boiler wall			er wall	6	
Radiant heat flux	52	Btu/ft2-h		Diameter, or width (if rectangular)				8	inches
Radiant heat loss (walls)	0.40	MMBtu/h		Approx area of opening/peephole			phole	60	sq in
Radiant heat loss (holes)	0.61	MMBtu/h		Boiler wa	all thickne	ss (incl ir	nsul) 💦 🔪	4	inches
Radiant heat loss (total)	1.01	MMBtu/h		Radiant loss factor (average)			0.722		
				Temp in combustion space				3271	F
(a) Stefan-Boltzmann law: 0.26		% of fuel heat input		Blackbody radiant flux				335204	Btu/ft2-h
(b) empirical correlation: 0.47		%							
(c) ASME correlation	0.34	% (without ΔT or	air velocity	y correctio	ons)				
	•								
Radiant heat losses 0.0.40 % (choose value based on three alternative estimates above)					hove)				

S	cree	en s	hot	s -	4 (heat	bal	+ e	ff ca	alcs	•	
HEAT BAL	ANCE										
Heat in fue	el (HHV)		383.0			Unburne	1 fuel	0.8			
Heat in co	mbustion	air	3.7			Radiant I	oss	1.5			
Heat in air	moisture		0.1			Convectiv	/e loss	0.5			
Heat in BF	W		79.4			Flue gas		75.1	(includin	, q water va	por)
Total heat	inputs		466.2	MMBtu/h		Blowdow	n	1.0			
						Total he	at losses	79.0	MMBtu/ł	1	
Heat in ste	eam		387.3	MMBtu/h							
EFFICIEN	CY CALC	ULATION	(modifie	ed ASME	method)						
					MMBtu/ł	1	JDK Note	2			
Primary In	put (Fuel,	HHV)			383.0		ASME method takes credit for heat				
							content o	of condens	sed moist	ture in flue	9
Losses:	Flue gas	(sensible)		27.8		gas as if it were a useful output.				
	Flue gas	(moisture	of comb	ustion)	41.5		Same for boiler blowdown.				
	Radiation	1			1.5		These are not realistic assumptions			imptions.	
	Convection	on			0.5						
	Unburned	i fuel			0.8		Boiler Ef	ficiency =	81.2%	by ASME	E method
	Total				72.2				80.4%	by heat b	palance
Useful Out	put (net s	team vs E	BFW)		308.7		Optimum	i air flow =	316	Klb/h	
									4124	Kscfh	

Live Software Demo

Outline

- Background
- Prototype demo
- Software development issues
- Q & A

Software Development Issues

- Which efficiency to use?
- Multiple fuels capability
- Point vs range η (will need more data)
- Design vs Rating algorithm
- Default values database
- GUI and Report formats
- Diagnostic/advisory capability
- Economics of η improvement
- GHG emission estimates
- User manual
- Maintenance, Updates, & Hotline support

Questions?

