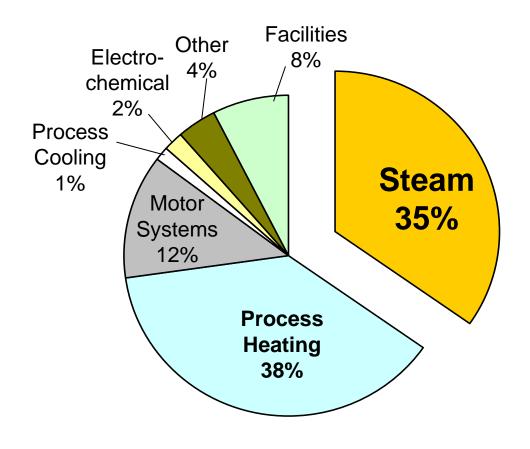


U.S. Department of Energy Energy Efficiency and Renewable Energy

SuperBoiler and Energy Intensive Processes Update

Steam BestPractices Steering Committee Houston, Texas


Bill Orthwein Technology Manager Industrial Technologies Program Energy Efficiency and Renewable Energy (EERE) U.S. Department of Energy

Industrial Boilers and Steam Use

Manufacturing and Mining Energy End Use

Note: Does not include offsite losses

- Steam Use: ~6,200 trillion Btu/yr
- Steam Onsite Losses: 2,800 Tbtu/yr
 - Generation ~ 1,200 Tbtu/yr
 - Distribution ~ 1,000 Tbtu/yr
 - Conversion ~ 600 Tbtu/yr

Age of Boilers

- Total sales of new boilers over the last 40 years are smaller than the current boiler inventory. This suggests that many boilers used today are more than 40 years old
- Approximately 7% of boiler capacity is less than 10 years old

2005 DOE Report: "Characterization of the U.S. Industrial Commercial Boiler Population"

Target Opportunity: Steam Generation

Big numbers

- Boiler population
- Energy consumption
- Emissions

Aging Boiler Fleet Creates Opportunities for New Technology!

SuperBoiler Vision

Target – Steam Generation

Potential Impacts:

- ✓ Increase industrial package boiler efficiency from 75% to 95%
- ✓ Reduce emissions of SOx, NOx, and carbon oxides

Controls

- "Smart" system controls
- Modeling ۲

System Engineering System integration

- approach
- Modeling to expedite overall design

Heat Production

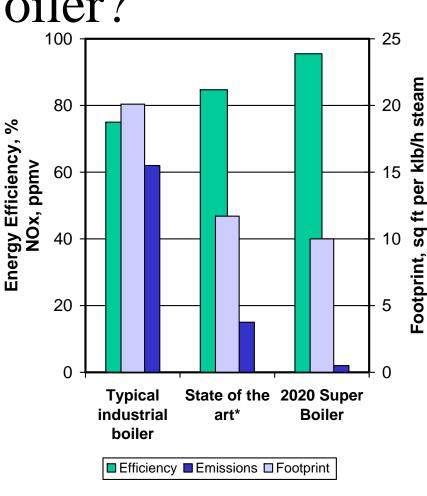
- Fundamental R&D
- CFD Modeling
- "Smart" burners

Heat Transfer

- Innovative heat transfer concepts
- Modeling and materials

Heat Recovery Improved materials

- Innovative concepts for heat recovery 7



U.S. Department of Energy Energy Efficiency and Renewable Energy Iringing you a prosperous future where energy is clean, abundant, reliable, and affordable

SuperBoiler?

Not a bigger boiler but a *better* boiler!

- > Higher energy efficiency - more than 95% HHV
- Super-low emissions down to 2 ppm NOx and 5 ppm CO
- > Smaller and lighter reduce size and weight by 50 percent
- Competitive performance
- > Cost-effective

* Not all in the same boiler

First Generation SuperBoiler

1st Generation SuperBoiler Concept

Evaluate four fundamental components in modern boilers

- Combustion
- Heat Transfer
- Heat Recovery
- Control

R&D focus

- > Advancements in all 4 boiler components
- System integration
- Evaluate a near-term product design that "meet" the RFP goals

Potential Benefits of 1st Generation SuperBoiler

- 499,900,000 MMBtu/year energy savings
- \$2 billion/year fuel cost savings
- □ 18,386,000 ton/year CO2
- □ 580,700 ton/year CO
- □ 205,600 ton/year NOx
- Compelling economic benefits to accelerate replacement of aging boilers

First Generation SuperBoiler Project

Project Description:

- Gas-fired firetube boiler using innovative concepts in burner, heat transfer, heat recovery & control
- Develop and test a prototype at industrial host site
- Meet aggressive performance targets
- Partnered with Cleaver-Brooks

Technical Objectives

- > 94% efficiency (from 70-83%)
- > <5 ppm NOx (from 30-100 ppm)</p>

Funding

- \$2,600,000 -- DOE
- \$3,500,000 industry cost share

Where are We?

□ Lab testing Complete

- > Optimized combustion performance
- Validated computer models for scale-up
- > Optimized heat recovery system performance
- > Optimized control strategy
- Field demonstration
 - First field demonstration at a site in Alabama complete
 - Single stage combustion design with transport membrane condenser to recover latent heat
 - Over 6,000 hours of operation with no significant problems
 - Currently installing dual stage combustion design at a fruit processing plant in Ontario, California
 - Planning underway to demonstrate retrofit of transport membrane condenser
- Commercialization (Role of Private Sector)
 - Introduce into commercial and light industrial market

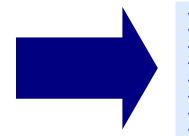
SuperBoiler Next Steps

SuperBoiler Vision – Next Steps

- August 2004 Workshop on Ultra-High Efficiency Industrial Steam Generation R&D Opportunities
- □ FY 2005 Solicitation Objectives:
 - Thermal efficiency greater than 94% (HHV)
 - NOx emissions below 2 vppm
 - CO emissions below 2 vppm
 - VOC emissions below 1 vppm
 - Capable of operating on multiple fuels
 - Capable of producing high temperature/high pressure steam (greater than 1500°F/1500 psig)
 - System weight and footprint 50% of currently available boilers with comparable performance

SuperBoiler Vision – Next Steps

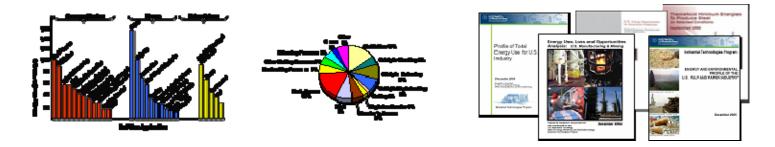
- Solicitation for Second Generation Watertube SuperBoiler closed April 14, 2005
- □ Three proposals selected for funding
 - Babcock and Wilcox
 - Gas Technology Institute
 - Research Engineering Incorporated
- Research delayed due to elimination of Combustion budget in 2006
- □ Two of three projects restarted in 2007
 - Gas Technology Institute
 - Research Engineering Incorporated
- **Two phases:**
 - Phase I
 - Up to two years
 - Preliminary design and development
 - Phase II (Following down select)
 - Prototype development and field trial


Energy Intensive Processes

Crosscutting: Energy Intensive Processes

Four Technology Platforms:

Maximize energy and carbon reduction throughout industry



- Industrial Reactions & Separations
- High-Temperature Processing
- Waste Heat Minimization & Recovery
- Sustainable Manufacturing

Platform selection criteria included alignment with:

- Industry's top energy-saving opportunities Industry priorities
- ITP mission and goals

• Existing R&D projects

Energy Intensive Processing (EIP): Strategy

Energy-intensive process R&D will focus on the following four platform areas:

- Waste Heat Minimization and Recovery
- **Industrial Reactions and Separations**
- **High-Temperature Processes**
- Sustainable Manufacturing
- Technology platform approach to address broad industry needs
 - Consistent, long-term R&D agenda
 - > Maximum synergy among technologies
 - Greater flexibility in launching new initiatives
- Leveraging national labs to include
 - > Review of existing IP and results of prior investments
 - Building cross-lab teams with appropriate industry partners
- Continue to solicit industry proposals to address R&D focus areas and restock our "pipeline" of advanced technologies
- Focus on concept definition studies and limited prototype development and field testing (FY08) 19

Energy Intensive Processes – 4 Technology Platforms

Industrial Reactions & Separations

- Advanced Water Removal
- Advanced Gas Separations
- Hybrid Distillation
- Energy-Intensive
 Conversion Processes

High-Temperature Processing

Sustainable Manufacturing

- Low-Energy, High-Temperature Materials Processing
- New Materials Development
- Materials Processing for Enabling Emerging Industries

Waste Heat Minimization & Recovery

- Ultra-High Efficiency Furnace
- Waste Heat Recovery Systems

- Net and Near-Net Design & Manufacturing
- Engineered Functional Materials and Coatings
- Advanced Casting, Forming, Joining, and Assembly
- Integrated, Predictive Manufacturing & Energy-Efficient Material Handling and Plant Operations 20

EIP Waste Heat Minimization/Recovery Portfolio

Key Market Facts

- Waste heat minimization/recovery consists of equipment and technologies used to convert, transport, manage, and recover or reuse energy needed for industrial processes
 - Process heating
 - > Steam

Key Energy Facts

- Combustion systems account for nearly two thirds (15 quads) of the energy used in manufacturing
- Waste heat recovery potential of 1.8 quads has been identified in select industrial processes

Key Stakeholders

- Chemicals, petroleum, and bio-based products
- Metals
- Pulp and paper
- Food processing
- Other industries that use steam and process heat

- CIBO
- ABMA
- IHEA

EIP Reactions and Separations Portfolio

Key Market Facts

- Reaction and separation processes transform raw materials (e.g., oil, natural gas, biomass) into energy, paper, chemicals and other products for use by utilities, manufacturing, and consumers
 - > Crude oil into the gasoline and essential chemical feedstocks
 - Feedstocks and natural gas into basic inorganic and organic chemicals
 - > Wood into paper products

Key Energy Facts

- Chemical and petrochemical reaction/separation processes account for over half of total U.S. manufacturing energy use
 - > Distillation alone accounts for 15% of the total

Key Stakeholders

- Chemicals and petrochemicals producers
- Pulp and paper manufacturers
- Food and agricultural processors
- Biomass processors

- Biotechnology and pharmaceuticals
- Biorefineries

EIP High-Temperature Processing Portfolio

Key Market Facts

- High-temperature processing covers the processing of raw materials and intermediate products at elevated temperatures
 - Produce intermediate or finished products and alter the thermophysical and chemical properties of the materials being heated

Key Energy Facts

- High-temperature processes in the steel industry consume >1 Quad/yr
- Heat treating presently accounts for energy use of more than 500 TBtu/yr at a cost of nearly \$20 billion

Key Stakeholders

- Metals and metal casting companies
- Metal fabricators
- Automotive companies
- Glass and ceramic manufacturers

• Photovoltaic and battery industries

EIP Sustainable Manufacturing Portfolio

Key Market Facts

- Sustainable manufacturing supports the entire spectrum of manufacturing industries
- Yield losses during the manufacture of finished components from raw materials can be as high as 30%

Key Energy Facts

- The additive energy costs that result from each step in the manufacturing supply chain are a large fraction of the ultimate product cost
- Improved yields per unit energy used will significantly impact overall product costs

Key Stakeholders

- Energy-intensive process industries
- Transportation and aerospace
- Equipment and component suppliers
- Manufacturers of advanced energy conversion devices

Current Status

- □ Laboratory call issued in February, 2008
 - All four platforms addressed
 - Solicitation closed April 1, 2008
 - > 35 proposals received, covering all four platforms
 - Review concluded May 16, 2008
 - Winners to be announced in June/July
- □ Industry call issued March 6, 2008
 - > All four platforms addressed
 - Solicitation closed May 7, 2008
 - > 63 proposals received, covering all four platforms
 - Review in late June
 - > Winners to be announced in late summer

