Superior Energy Performance Partnership and Certifying U.S. Manufacturing Plants for Energy Efficiency

Kathey Ferland, Texas Industries of the Future

BP Steam Steering Committee

May 21. 2008 Deer Park, Texas

Superior Energy Performance Partnership and Certifying U.S. Manufacturing Plants for Energy Efficiency

- Background Why is Industrial Energy Efficiency Important?
- Superior Energy Performance Partnership
- Plant Certification

Achieving Superior Energy Performance

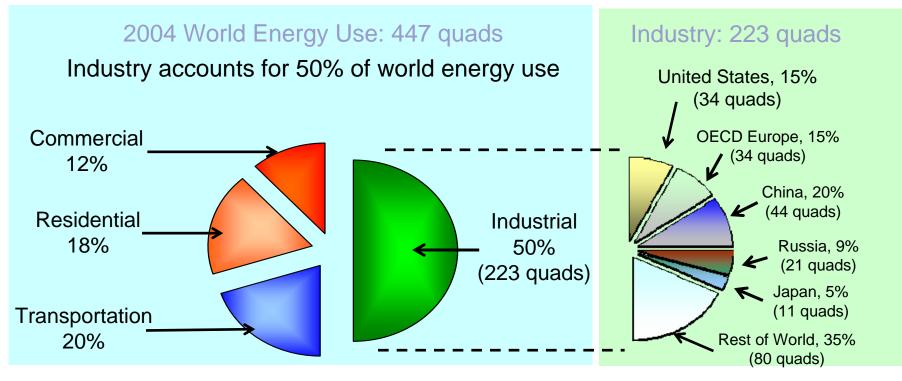
Background – Why is Industrial Energy Efficiency Important?

Converging Issues of Energy, Economy and the Environment

- Uncertain Energy Supply
- Volatile Energy Prices
- Climate Change
- Sustainability
- Corporate Accountability

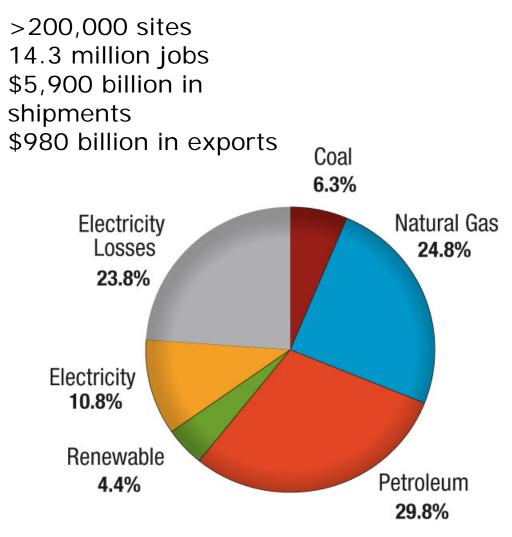
Opportunity:

"Existing technologies with an attractive internal rate of return can cut the growth in global energy demand by half (or more) within fifteen years."


-- Curbing Global Energy Demand Growth, McKinsey & Co., May 2007

Focus on Industrial Energy Efficiency is Growing around the Globe

- UN Industrial Development Organization is promoting systems energy efficiency and energy management standards for both developed and developing nations.
- International Organization for Standardization (ISO) is pushing a broad portfolio of initiatives to promote energy efficiency.
- China initiated plan to reduce energy use 20% per unit of GDP over 2005 levels by 2010.
- Through the Asia Pacific Partnership, the U.S., Australia, Korea, Japan, China, and India are promoting greater industrial energy efficiency.
- Energy efficiency is now a major focus of G-8 meetings.


World Industrial Energy Use

15% of industrial energy is consumed in the United States

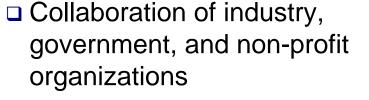
U.S. Industrial Sector Represents a Big Opportunity

32 quads or ~33% of total U.S. energy consumption

U.S. industry represents:

- 37% of U.S. natural gas demand
- 29% of U.S. electricity demand
- 30% of U.S. greenhouse gas emissions
- More energy use than any other single G8 nation
- Large opportunities for
 - Energy reduction
 - Emissions reductions
 - Fuel flexibility

U.S. Industrial Sector


Current Situation

- □ Energy efficiency peripheral to most corporate business strategies
- R&D expenditures minimal for process and energy technologies
- Some US plants are best-in-class; application of state-of-the art technology; excellence in energy management
- Combined heat & power applications are common place, but not as prolific as in EU and Japan
- Lack of incentives to invest in energy efficiency technologies
- No common standard for managing energy
- □ Insufficient energy management skills in work force
- Limited energy fuel choices
- Volatile US energy prices
- Uncertain future environmental regulations

Achieving Superior Energy Performance

Superior Energy Performance Partnership

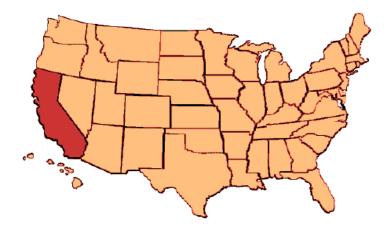
Superior Energy Performance Partnership

- Seek to improve the energy intensity of U.S. manufacturing through a series of initiatives.
- Support ANSI-accredited

Plant Certification program

www.superiorenergyperformance.net

National Association



Superior Energy Performance Goal

Proposed Goal: US industry improves energy intensity by 25% over a 10 year period: from 2007 to 2016

Reducing U.S. Industry's Energy Intensity by 25 percent

- Saves 8.4 quadrillion Btu per year
- Equal to energy consumption of state of California in one year; every house, commercial building, automobile and manufacturing plant

Elements of Superior Energy Performance

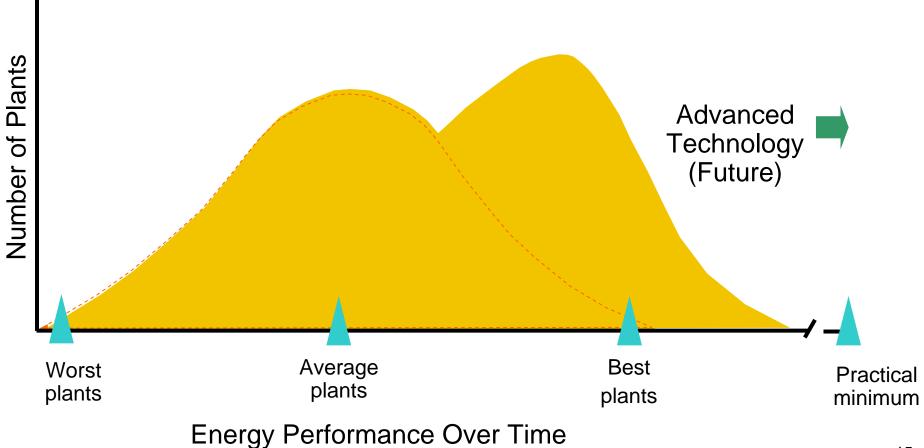
- 1. Energy Quick Start website. See <u>www.EnergyQuickStart.org</u>/
- Voluntary commitment of 25% reduction in energy intensity improvement over 10 years (through EPACT Section 106)
- 3. Plant certification

Achieving Superior Energy Performance

Plant Certification

ANSI-accredited Plant Energy-Efficiency Certification

Industry can be expected to respond positively to a certification program for energy efficiency in manufacturing plants that is:


- Voluntary
- ANSI accredited
- Third-party validated
- Industry backed

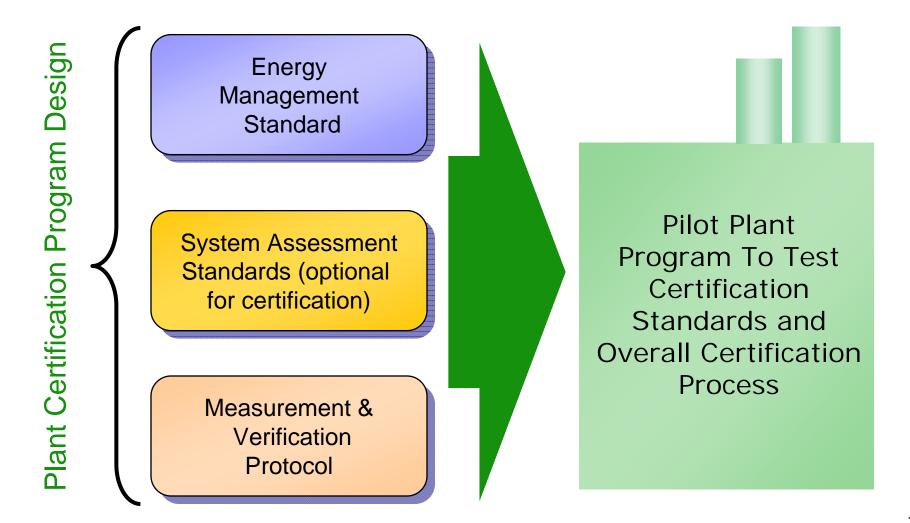
Elements of Plant Certification

- Implement Energy Management Standard (U.S. ANSI standard; International ISO standard).
- Optional use of System Assessment Standards for industrial systems (pumping, compressed air, steam, process heating) building on industry best practices
- Measure and validate energy savings through a third-party certifier

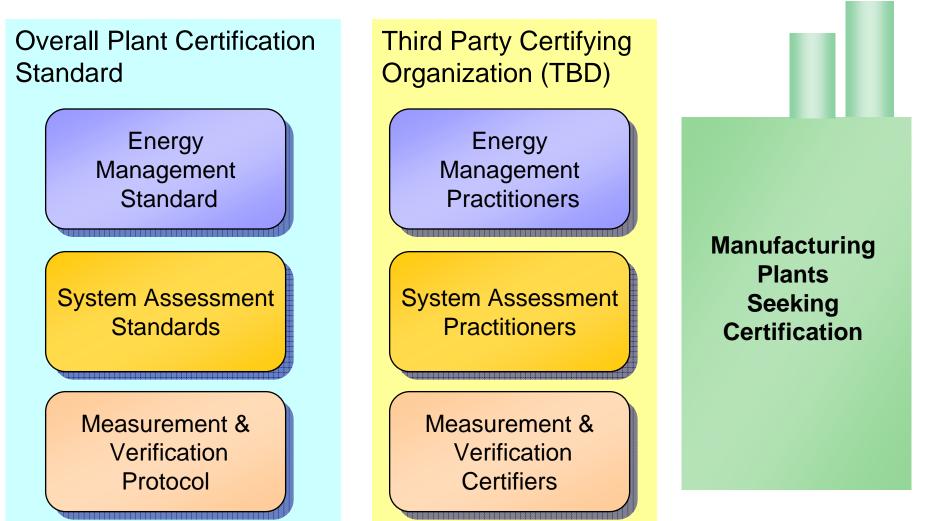
Impact on All Manufacturing Plants' Energy Performance

Strategic Goals of Plant Certification

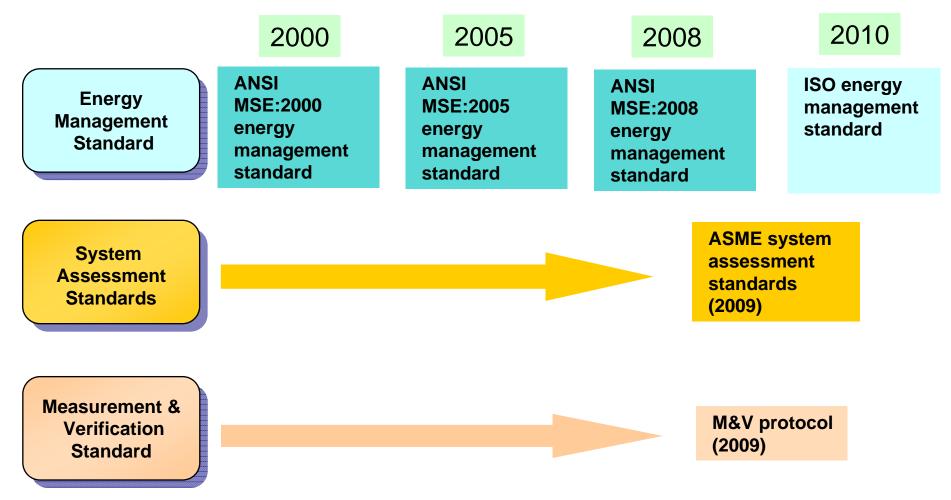
- Fosters an organizational culture of continuous improvement in energy efficiency
- Develops a transparent system to validate energy intensity improvements and management practices, and thus
- Creates a verified record of energy source fuel savings and carbon emission reductions with potential market value that could be recognized both nationally and internationally


Benefits of Plant Certification

- **G** Establishes systematic means to achieve continuous improvement
 - Standards for energy management and system assessments
 - Tools and resources to assist in implementation
 - Process for validation
 - Focus on reducing energy intensity per unit of output
- Helps plants get on the path to improvement by adopting tools and resources
 - Promotes buy-in to energy efficiency
- Applies to most companies (wide-range of industries)
- Delivers value to all plants, not just those that pursue certification
- Creates a transparent way to compare energy efficiency


Benefits of Certification, continued

- Helps industrial companies and their supply chains fulfill their voluntary commitments to reduce energy intensity
- Codifies use of DOE tools, assessment protocols, best practices, and Qualified Specialist program
- Creates market demand for assessments, displacing the need for DOE-funded assessments in the long term
- Empowers the manufacturing supply chain to push energy efficiency
- Creates market value for energy efficiency—recognizing continual improvement in energy intensity at rates well above business as usual
- Validates energy and carbon reductions at manufacturing facilities—potential to enable trading of emission permits and credits
- Establishes U.S. as international leader in industrial energy efficiency


Certifying Plants for Energy Efficiency

Future Certification Infrastructure

Energy Management Standard Evolution

What Is an ANSI-Accredited Certified Plant?

For initial certification, the plant:

- 1. Complies with the energy management standard, and
- 2. Achieves validated energy intensity performance by:
 - a) Demonstrating energy intensity improvement of >5% over the previous 24 month period OR
 - b) Assessing any energy system which uses greater than 10% of total plant energy use (not including feedstocks) and demonstrating that the plant has:
 - I. Implemented >30% of total Btu energy savings opportunities that meet the company's internal rate of return (IRR) and are identified through application of system assessment standards, OR
 - II. Met or exceeded the Energy Management Best Practice threshold* for systems for which Best Practices exist.
- * Energy Management Best Practice threshold is still to be defined

What Is an ANSI-Accredited Certified Plant?

For re-certification at three year intervals, the plant demonstrates:

- 1. Continued compliance with the energy management standard AND
- 2. Achievement of validated energy performance through:
 - a) Demonstration of an energy intensity improvement of 12.5 % or greater over the previous 5 year period; OR
 - b) Demonstration that its energy intensity is within the top 10 percent of its sector (example: Btu/pound of product) OR
 - c) Documentation that any energy system which uses greater than 10% of total plant energy use (not including feedstocks), and for which a Best Practice threshold exists, meets the Best Practice threshold.

Looking Forward: Key Milestones

- June 2008: Texas Pilot project begins field testing ANSI energy management standard and system assessment standards
- Feb. 2009: Select third-party certifying organization
- May 2009: Begin field testing of measurement and verification methodology in pilot plants

- Dec. 2009: Begin training certified practitioners in energy management and system assessments
- Feb. 2010: First plants are ANSI certified for energy efficiency, based on pilot program results
- Sept. 2010: National launch of third-party certification program
- Sept. 2011: Third party feebased, certification business model established

Texas Pilot Project

Goal:

- To verify that the processes, energy systems standards and performance criteria considered for application to a plant under the certification program are:
 - Practical and achievable
 - Provide benefit to participating plants
 - Reliably identify plants that meet the proposed certification criteria

Texas Pilot Project Schedule

- Jan-May 2008 Recruiting 5 plants from diverse sectors
- July 08-March 2009 Training and coaching on implementing an energy management system
- July-Dec 2008 Conduct two assessments per plant using the proposed system assessment standards
- June-Oct. 2009 Conduct audits on the management system and energy performance
- Oct. 2009 Recognition of plants

Comprehensive Plant Energy Management

AMERICAN National Standards Institute

Plants improving energy intensity > 2.5% per year

Utility, State, Federal Incentives; Carbon Credits

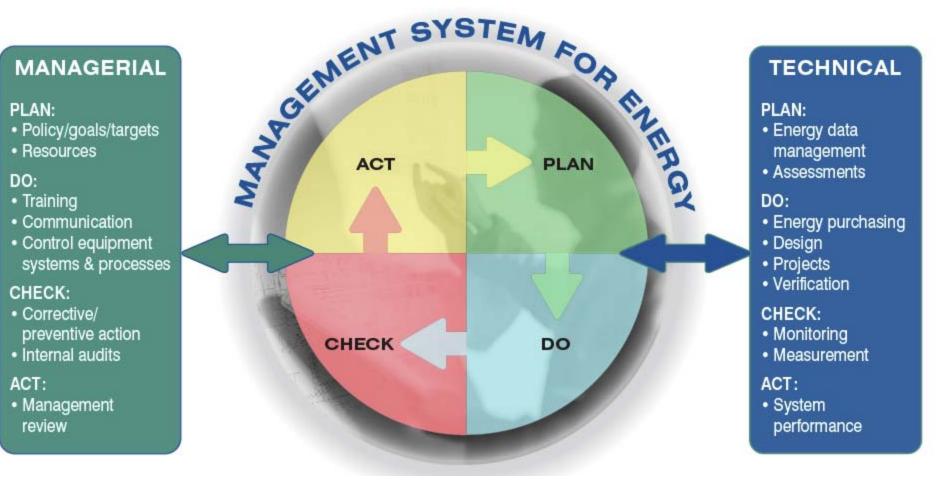
Recognition & Credits

Save Energy Now

Tools, Training & Assessments

Achieving Superior Energy Performance

Energy Management Standard


Need for Energy Management System

Energy management is not a destination...

It's a process!

Basic Elements of ANSI Management

www.ansi.org

Why Implement MSE 2000?

- Continual Improvement
- Sustain Energy Savings
- Environmental Performance
- Cost Savings
- Transparent StructureDO
- Repeatable at Different Locations within an Organization

International Standard

□ International Energy Management Standard

□ UNIDO Expert Group, Vienna, March 21-22, 2007

□ ANSI (U.S.) / ABNT (Brazil) partnership

□ Project Committee - PC 242

First Meeting of PC 242 - September 2008, Washington, DC

UNIDO / CSC Working Group Meeting

- □ Discuss similarities and differences
- □ Preparatory harmonization

□ Detailed & Summary Comparisons developed

