Challenges in Industrial Waste Heat Recovery

saveen

Texas Technology 2006 Showcase Tony Dafft December 6 & 7, 2006

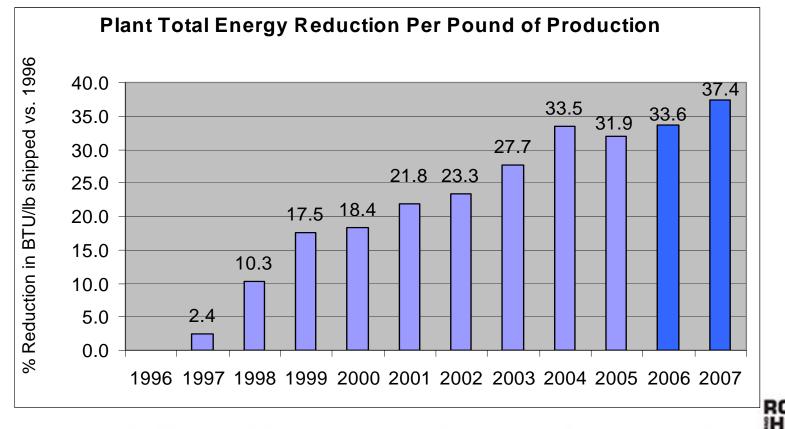
Outline

- Plant Statistics and Energy History
- Tools Used to Identify Projects
- Sample of Projects
 - Completed
 - Working

saveen

• Conclusions

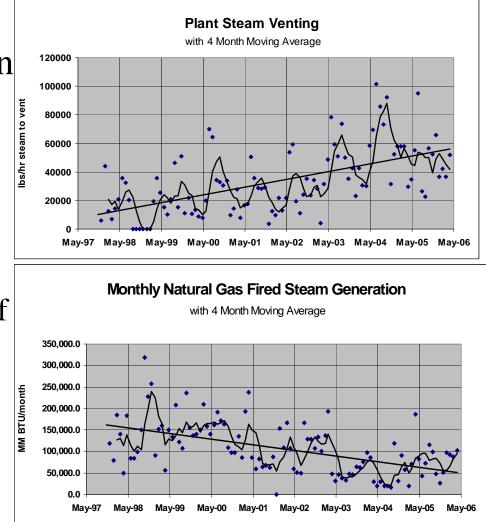
saveenergy


Plant Statistics and Energy History

- Plant Site
 - Over 900 acres
 - 1 to 2 million lb/hr steam generation
 - 600 psig, 150 psig, 75 psig and numerous LP systems
 - 700 employees
 - Over 2 billion lbs of product shipped annually
 - Multiple operating units
 - Independent steam producers and steam consumers

Plant Statistics and Energy History

- Energy Program started in 1996
- 34% reduction in BTU/lb product by 2004
- Over 100 projects/operational initiatives completed



Plant Statistics and Energy History

- Past efforts focused on
 - Direct natural gas reductions
 - "putting steam in the pipes"
- Result is

saveenerg

- Increased frequency of steam venting
- Reduction in purposefully fired steam

Plant Statistics and Energy History

saveer

- Challenge Waste heat recovery projects can't use 100% of the energy savings in project justifications! "Waste heat steam use it or lose it"
 - Recovery of waste heat has value less than 100% of the time
 - Conversely, use of excess steam has less than 100% utilization
 - Heat recovery and steam consumer projects are harder to justify

Tools Used to Identify Projects

- Site Energy Assessments
 - Structured process or unit assessments
 - Steam trap and leak audit
 - Compressed gas audit
 - Infrared survey

sav

– DOE basket of assessments

Tools Used to Identify Projects

- Develop / Update Plant Steam Balance
 - Commercial software makes this easier
 - Real-time studies over various periods
 - Identify imbalances, pressure letdown opportunities, high flash losses and condensate return options
- Determine Utilization of Existing Heat Recovery Systems
 - Histograms and Monte Carlo analysis useful
 - Steam Supply/demand imbalances can be quantified

Tools Used to Identify Projects

- Site and Sub-System Heat and Material Balances
 - Identify Inefficiencies and Opportunities:
 - High approach temperatures on exchangers
 - Process Cross-exchange heat transfer opportunities
 - Poor power conversion pumps, compressors, % load
 - High stack temperatures boilers, heaters, furnaces, gas turbines
 - High boiler blow-downs and excess oxygen
 - Condensate return opportunities
 - Flared or waste streams with fuel value
 - High temperature loads to cooling tower or air coolers

save energy Tools Used to Identify Projects

List all natural gas/fuel consumers and evaluate potential reductions

- Pinch Analysis
 - Target cross pinch heat transfer
- Quantify and Match Heat Sources and Sinks
 - List available heat sources, duties and temperatures
 - List heat sink sources, duties and temperatures
 - Air and water common sinks
 - Air preheat increases NOx on combustion equipment

Save energy Tools Used to Identify Projects Value of Steam

- Boiler efficiency may be 80%, but steam for consumption in the plant (steam system efficiency) will be less
- See DOE Best Practices Steam Technical Brief <u>How to Calculate the True Cost of</u> <u>Steam</u>
- If steam venting occurs, use a factor for % utilization of steam (recovered or used)

Completed Projects

• Capital

savee

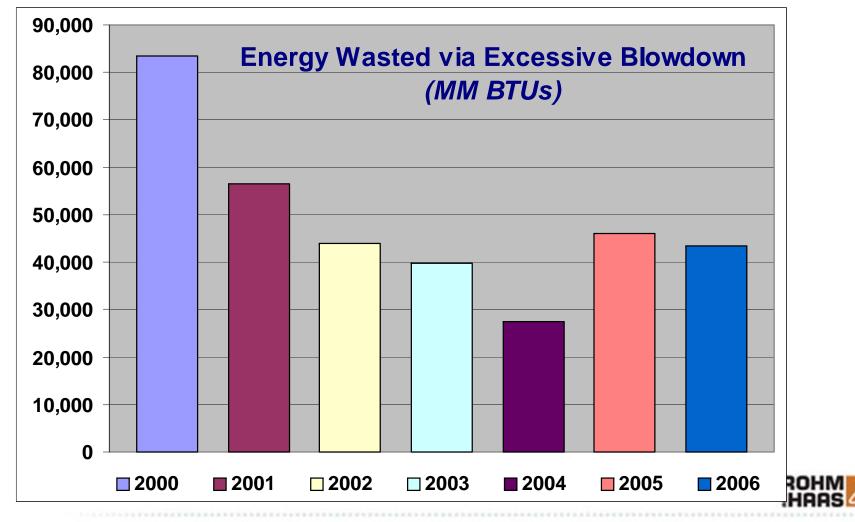
- Process Waste Heat Boiler increase in surface area
- Parallel 600# steam line to reduce pressure drop, allowing export of steam vs. venting at high rates
- Condensate return frequency improvements by piping modifications to reduce dP
- Repair bypass on second stage compressor intercooler

saveenergy

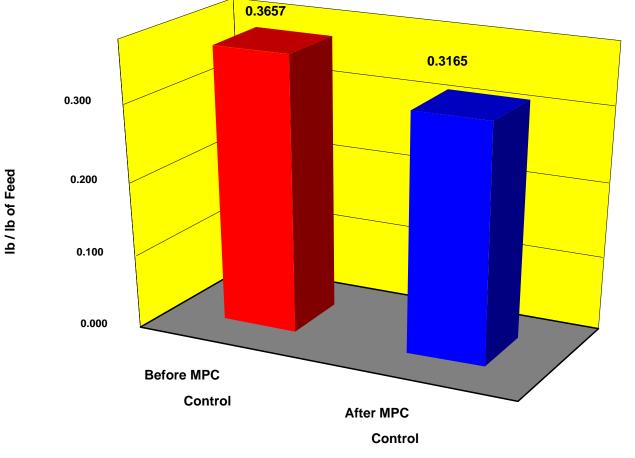
Completed Projects

- Operational
 - Stop slow roll of steam turbine
 - Lower 75# header pressure, reduce multiple steam turbine exhaust pressures and frequency of venting
 - Improved DI water quality allowing for a 60% increase in boiler cycles
 - Automated pressure control for excess 600
 # steam pressure
 - Clean waste heat boiler surfaces

Completed Project

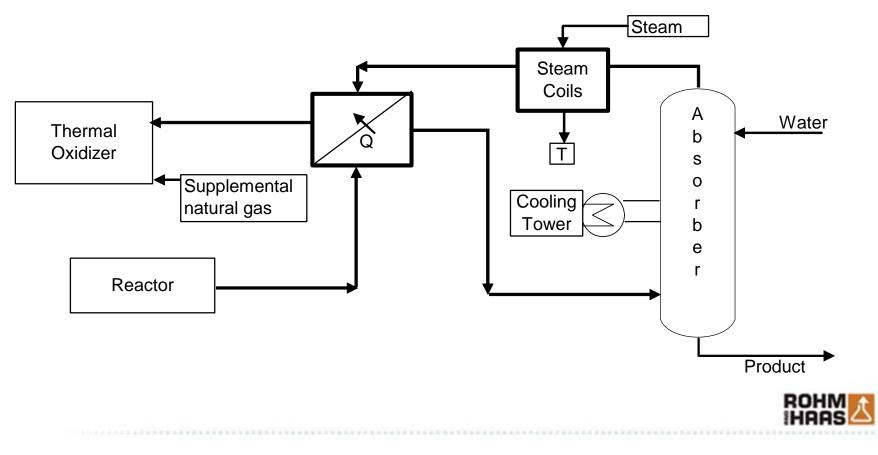

savee

- Insulate hot 130C propylene line to reactor
 - 3.5MMBTU hr of low level heat kept in system to produce high level steam in reactor
 - Savings from reduced natural gas fired steam
 - 1 year payback at \$6 gas with steam valued
 50% of the time



Completed Projects

• Reduction in Boiler Blow-down – requires continuous surveillance


Save energy Completed Project Model Predictive Control -14% Steam Reduction in Distillation Operation

Working Project - Gas to Gas Process Exchanger

- Heat recovery of 15 20 MMBTU/hr
- Gas to Gas more surface area for heating

Save energy Working Project - Gas to Gas Process Exchanger

Reference US patent 2004/0143149

saveenergy

Working Project

- Increase condensate recovery frequency from several local reboilers
 - Problem was pump NPSH
 - Solution was regenerative turbine pump
 - Installed in 1999
 - Ran ok until production rates crept
 - Regenerative turbine pump has fixed capacity
 - Results in overflow of tank at high rate operation
 - Current plan is to install centrifugal pump with cooling of condensate on pump suction by DI water injection


- Current Configuration
 - GE Frame 5 gas turbine with HRSG driving a multi-stage multi-case air compressor
- Plant steam balance results in venting majority of steam produced in HRSG, and is projected to increase
 - Simple cycle operation averaging ~22,500 BTU/Kw-hr when no steam demand
 - Poor turndown with respect to energy and limited air compressor capacity at high end
 - Gas turbine makes more steam with higher rates
 - Poor fit for plant that vents steam more as rates increase

- Planned Changes
 - Shutdown gas turbine /compressor system
 - Install new condensing/extraction steam turbine with new compressor
 - Grassroots location
- Start-up Q2 2007

- Benefits
 - Plant air emission reductions expected
 - NOx reductions of 80 tpy
 - CO reduction of 95 tons/yr
 - CO2 reductions of 47,000 tons/yr
 - Increased use of letdown steam for power
 - De-coupling of steam production with process rates
 - New compressor more efficient
 - 12,500 hp vs. 13,700 hp at same operating point
 - Turbine extraction flow can handle 50% of power needs
 - Full condensing capability
 - Condensing steam rate of 7.4 lbs/hp-hr

- Heat Rate Comparison in BTU/Kw-hr & (cycle efficiency):
 - Gas Turbine Simple Cycle
 - Gas Turbine Combined Cycle
 - Steam Turbine full extraction
 - Steam Turbine full condensing
 - Effective Heat rate for purchased
 - power at \$7 nat gas and \$0.08/Kw-hr
 - Turbine Letdown power

22,520 (15%) 12,690 (27%) 12,440 (27%) 19,946 (17%)

11,429 (30%) 5,000 (68%)

saveenergy

Challenges in Waste Heat Recovery Conclusions

- 100% of energy value is not economic value
 - However, with natural gas 2-4 times the cost when many processes were designed, lower utilizations still have reasonable payback.
- Preheating a common low temperature source of air to a combustion unit leads to higher NOx generation
- Heat recovery utilization improvements generally require continuous effort to sustain

Conclusions

- Current market environment has doubled the cost of similar projects in the last 2 -3 years
- Combine heat recovery projects with end of life, environmental and reliability improvements
- Flexibility in managing steam systems is key to high waste heat utilization

