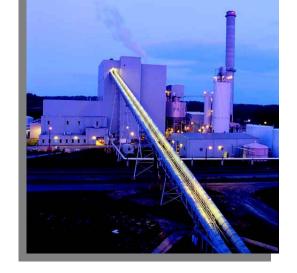


Energy Efficiency Options for Industrial Plants

Why Energy Efficiency?

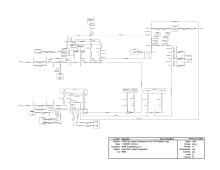
IBO's can get ahead of curve

- Emissions compliance
 - degrades efficiency/increases auxiliary loads
- GHG Regulations
 - Efficiency/Process/Equipment Performance Improvements
 - Boiler tuning/furnace exit gas heat recovery
- CO2 Registries
 - Identifies potential regulatory/environmental targets
- DOE
 - Efficiency is cheapest way to reduce CO2 emissions
- Efficiency 1-10%; MA: Efficiency/Renewable offsets


Efficiency Improvement The Process

- Define Objectives
- Review Design Basis
- Establish Baseline
- Assess Condition
- Interview Plant Personnel
- Benchmark & Evaluate
- Identify Improvements
- Rank Economically
- Plan & Implement
- Validate & Verify
- Monitor & Follow-up

Where do we start?

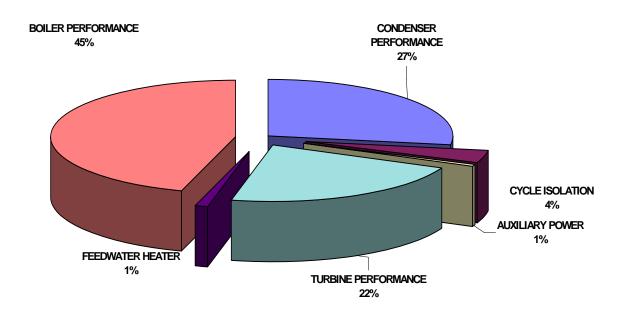

Review Design Basis/Establish Baseline

Engineering Evaluation

- Plants operating for many years with staff turnover
- Plant modifications may not have been integrated
- Current operations to be optimized with design
- Plant configuration control brought up to date
- New perspectives bring potential energy savings

Unit Performance Testing

- VWO Test with Senior Consultant in Control Room
- Move unit to determine equipment constraints
- Identify suspect instruments by closing heat balance


Where are we now?

Energy Assessment

- Engineering/Economic Evaluation
- Determine Major
 Equipment Constraints
- As-Found vs. Design Heat Balance comparison

Unit #1 Energy Losses

Design Heat Rate 8960 BTU/kWhr As Found Heat Rate 9602 BTU/kWhr

Asset Optimization Performance – Phase I

BOP CCR: Capacity Constraint Release (current configuration)

Step 1: Identify Low Hanging Fruit

- Collect VWO Operating Data, Power Uprate Heat Balance
- Interview plant management & operations staff
- Establish current baseline & model systems
- Lighting/HVAC/Motor/VSD/automation efficiency upgrades

Step 2: Mitigate Capacity Constraints

- Heat Rate conclusions (quantifies cost of production impacts)
- Develop solutions to unlock constraints
- Identify cost reduction opportunities
- Develop budgetary costs/predicted MW regains

Result: Actionable NPV specific recommendations

Asset Optimization Performance – Phase I

BOP LF: Limiting Factors

(support of prime mover uprate)

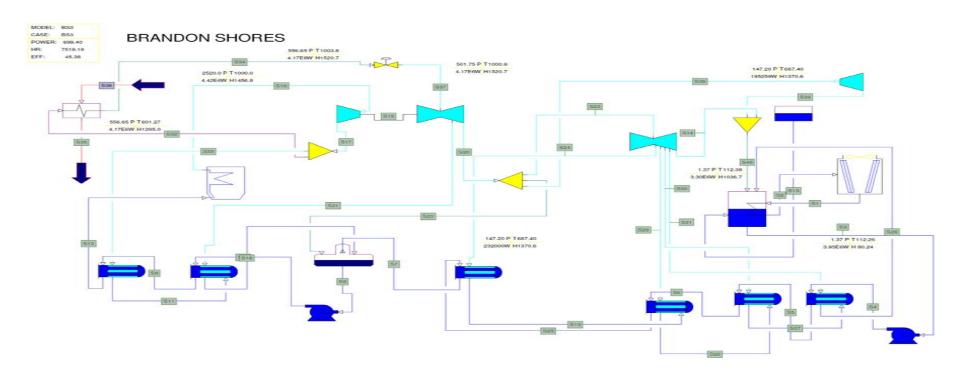
Step 1: Assessment of Current Operating Performance

- Collect VWO Operating Data, Power Uprate Heat Balance
- Interview plant management & operations staff
- Establish Current Baseline
- Model mechanical and electrical systems

Step 2: Assessment & Release of BOP Limiting Factors

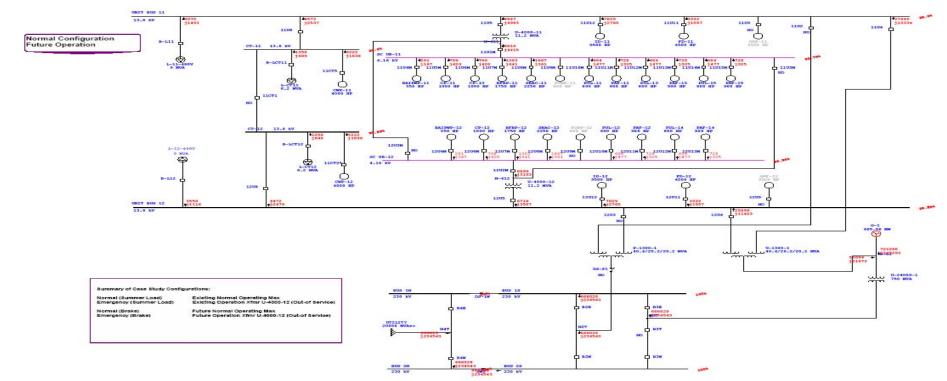
- Identify equipment/systems that prevent achieving full uprate
- Develop solutions to unlock constraints
- Develop budgetary costs/predicted MW regains

Result: Actionable NPV specific recommendations



BOP CCR/LF Analysis

- Thermal Cycle Modeled in Gate Cycle
 - Establish New Flow/Pressure/Temp Conditions at Components



BOP CCR/LF Analysis

Electrical System Modeled in ETAP

Load Flow Analysis

One-Line Diagram - Brandon Shores Unit 1 R1 (Load Flow Analysis)

09:55:32 Oct 11, 2006 Project File: BrandonShores

Midwestern Industrial Power Facility

- Installing APCS for SOx Reduction
- Requests Boiler/Turbine/BOP optimization study to determine uprate capacity for three existing 144MW units

The SAVE™ Solution:

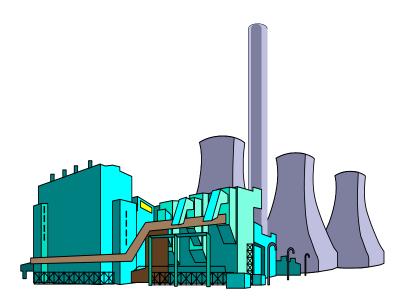
- Optimized Plant Retrofit (OPR) Study addresses uprating of boiler and turbine
- Debottlenecking approach analyzes BOP system and equipment constraints

- 20% uprate (w/HP retro) and 10% uprate (w/o HP retro)
- BOP constraints identified and mitigation plan developed

Industrial Power Facility

- Plant exhibiting high reliability
- Identified need to improve heat rate
- Target underperforming equipment/systems

The SAVE™ Solution:


- Integrated steam plant analysis
- Identify, assess and mitigate BOP system and equipment constraints

- Small capital recommendations generated \$2.2M NPV
- Included installing condensate return system, FWH

Industrial Power Facility

- Combined cycle generation
- Identified need to improve heat rate
- Focus on power block

The SAVE™ Solution:

- Integrated plant analysis
- Assessed third party financial contracts

- Recommendations identified ~\$4.5M in annual savings
- Included installing unit controls and plant-wide EMS

AES Warrior Run (180MW CFB)

 Client requested assistance in recovering 600 BTU/kWh degradation from initial as commissioned plant heat rate

The SAVE™ Solution:

- Energy Assessment Approach
- Evaluated current VWO performance against design basis
- Generated Operational, Maintenance and Capital project recommendations

- 40-60% of heat rate degradation recovered
- Capital project: condensate to dry limestone < 2yr payback

Eastern Supercritical PC Units

- Slated for divestiture, investments lagged
- Older plant beyond original design life
 The SAVETM Solution:
- Integrated Reliability/Efficiency Assessment Recommendations:
- Cycle analysis estimated 1000BTU pick-up
- Recover > 100,000MWH of lost availability
- Developed critical systems equipment plan
- Identified key programmatic issues

<u>Results:</u>

- •\$21M NPV in Efficiency Improvements
- •\$3M in Annual Availability Recovery

MidAmerican Energy Louisa 1 (758MW)

- Installing APCS for SOx Reduction
- Requests IP/LP Retrofit and Boiler/BOP optimization study to recover aux load

The SAVE™ Solution:

- IP/LP retrofit
- Enhanced Optimized Plant Retrofit (OPR)
 Study addresses boiler issues and upgrades
- BOP analysis identifies CT/CW limitations and back-pressure improvements

- Total uplift predicted to be ~50-59MW depending upon season
- Enhanced OPR added ~30-40MW to the IP/LP only case

THANK YOU FOR YOUR TIME AND ATTENTION!

Tony Munisteri, P.E., C.E.M. Director, Asset Optimization

P: (631) 420-3220

F: (631) 420-3206

C: (516) 297-4019

anthony.munisteri@us.sigenery.com