Recent Developments in Advanced Approaches for Dispersion Modeling

Bob Paine, AECOM

Presented at the CIBO Focus Workshop on
Air Quality Modeling

June 12, 2012

Outline of Presentation

- AERMOD modeling issues of concern
 - Low wind speed conditions
 - Complications in terrain situations
 - Applications in gentle slope cases
 - Distance applicability
 - Adding background to modeled concentrations
 - Fugitive emission modeling
 - Building downwash: light winds and sources with "fugitive heat releases"
 - NO to NO₂ conversion rate
 - Overpredictions for low mixing heights in daytime conditions
 - Modeling of sources with variable/intermittent emissions

Outline of Presentation, continued

- Approaches to address areas of concern
 - Corrections for low wind speed conditions
 - Sub-hourly AERMOD modeling
 - Site-specific met data in terrain situations
 - North Dakota 1-hour SO₂ evaluation study
 - Approaches in gentle slope cases
 - Extent of steady-state model application
 - Advances in modeling fugitive emissions
 - Building downwash adjustments
 - Advanced ambient ratio method for NO to NO₂ conversion
 - Fix to AERMOD formulation for penetrated plumes
 - Emissions variability processor (EMVAP)

Experience with AERMOD Accuracy

- AERMOD was extensively evaluated before promulgation in 2005
- User experiences since then have uncovered new concerns not previously found, or not evaluated
- EPA reliance on accurate modeling is more important than ever before due to very stringent NAAQS and new EPA policy to not apply SILs if new violation is modeled
- However, EPA resources to address modeling issues of concern are limited
- Involvement of model user community to help EPA address these problems is critical

What are AERMOD's Problems with Low Wind Speeds?

- AERMOD had limited evaluation for these conditions
 very few hours with wind speed < 1 m/s
- Model formulation problems cause underestimates of turbulent mixing in stable conditions
- Result is very compact modeled plumes (stable)
- Vertical profiling results in possible underestimates of wind speed increase with height
- Modeled horizontal trajectories are perfectly level, so even modest terrain increases lead to plume impacts
- Plume travel time is assumed perfectly straight (and perfectly level) over many hours of transport
- Meander component of plume dispersion is too low
- Sonic anemometers and AERMINUTE has resulted in many more cases of wind speeds < 1 m/s

Phase 1: Meteorological Evaluation Study

- Requested by EPA; evaluation focused upon turbulence levels ("friction velocity")
- Three research-grade databases were selected for low wind speeds and sonic anemometer to get observed turbulence
- Sites chosen were Cardington (flat, grassy UK site),
 Bull Run (mixed land use in TN), winter study in
 Colorado
- Evaluation focused upon nocturnal, low wind conditions

Meteorological Evaluation Results

- Single-level friction velocity (turbulence) predictions by AERMET were found to be underestimated for low wind, stable hours
- An adjustment to the formulation was suggested by the data, and appeared to greatly improve the AERMET performance
- This adjusted formulation was successfully tested all three met databases

Phase 2: Tracer Database Evaluation

Study focused on 3 databases:

- 1. Bull Run, TN (tall stack, buoyant plume)
- 2. Idaho Falls, ID (low-level releases)
- 3. Oak Ridge, TN (low-level releases)

AERMOD worked well for Bull Run (daytime, convective low winds), so study focus was on the other databases, for which key conditions were stable cases

Tracer Evaluation Results

- AERMOD overpredicted by factor of 6 for Idaho Falls, and by factor of 20 for Oak Ridge at 100-m distance
- Better performance resulted from:
 - Corrections to turbulence in AERMET processing
 - Doubling of the minimum horizontal plume spread in AERMOD
 - Inclusion of direct turbulence observations (wind direction standard deviation sigma-theta)
- Overpredictions were reduced to a factor of about 2

Interaction with EPA

- Results were documented, and entire database provided to EPA in Spring 2010
- EPA acknowledged results, but has not acted upon them
- New NAAQS implementation has occupied EPA attention during this period
- Hopefully, new effort to engage EPA with model user workgroup will provide results in next 1-2 years
- API is funding a sequel to the low wind speed study, and we expect to have EPA interaction throughout the process

Recent Low Wind Issues

- Implementation of AERMINUTE and proliferation of sonic anemometers increases low wind observations
- This makes low wind problems in AERMOD even worse
- Lower surface roughness parameterization with "AERSURFACE" reduces predicted turbulence and creates more low wind problems
- Low mechanical mixing heights due to above issues results in "laser beam" plumes at night due to questionable profiles of turbulence and temperature
- A possible related problem is downwash effects in near-calm winds in stable conditions

Why develop a sub-hourly AERMOD Capability?

- This is another way to tackle the low wind speed overprediction problem
- Sub-hourly meteorological data is now routinely available from both on-site met and 1-minute ASOS
- Hourly AERMOD predictions for low wind speeds overstate impacts for the coherent plume component
- In low winds, winds can go in several directions during an hour, resulting in multiple concentration "lobes"

New Procedure: AERMINUTEPlus/SHARP

- AERMINUTE has been enhanced under EPRI funding to output sub-hourly wind averages – we call this "AERMINUTEplus"
- Wind averaging is consistent with EPA's AERMINUTE
- Sub-Hourly AERMOD Run Procedure (SHARP)
- Sub-hourly periods are user-specified from as high as 30 minutes each to as low as 2 minutes each (we recommend 10-15 minute periods)
- Effectively, the modeled plume is spread out by sending it into different directions during the hour
- Evaluation results to date look encouraging for the sub-hourly procedure

Optimizing AERMOD Performance in Complex Terrain Applications

- Key issues for complex terrain are plume rise, interaction with terrain, and dispersion
- AERMOD is designed to "penalize" use of single-level (10-m) meteorological data through conservative parameterizations
 - Turbulent mixing is minimized
 - Vertical temperature inversion is often too strong
- Actual measurements (e.g., tall tower / sodar) near plume level will override these parameterizations and reduce model overpredictions

Additional Comment: Building Downwash in Light Winds

- Unexpected AERMOD results have occurred for buoyant stacks with heights close to building heights
- Many recent AERMOD runs indicate predictions of peak concentrations for buoyant point sources due to building downwash in <u>stable</u>, <u>nearly calm conditions</u>
- This is contrary to expectations, since building wake expected to be weak in low winds, and plume rise highest in those conditions
- Once again, this is an area for more attention and comparisons of modeling to monitoring

EPA Appendix W Modeling

- Modeled emission rate input (for short-term averages) is:
 - Emission limit x operating level x operating factor(lb/MMBtu) (MMBtu/hr) (hours/year)
 - Max. emission x design x continuouslimit capacity continuous
- Modeling continuous operation for intermittent sources or maximum emission limits for variable emission sources is of concern, particularly for a probabilistic NAAQS

Emission Rate Variability

- Large variation often possible over the course of a year
- Intermittent sources (e.g., emergency backup engines or bypass stacks) present modeling challenges
- For these sources, assuming fixed peak 1-hour emissions on a continuous basis will result in unrealistic modeled results
- Better approach is to assume a prescribed <u>distribution</u> of emission rates
- EMVAP (Emissions Variability Processor), described below, uses this information to develop alternative ways to indicate modeled compliance using a range of emission rates <u>instead of just one value</u>

Example of Hourly Emissions Sequence

Example Emission Cumulative Frequency Distribution

Example Emission Cases for EMVAP

Approach ("EMVAP") for Multiple Allowable Emissions Modeling

- Create an emissions frequency distribution
- Model the source with unit emissions (up to 5 "real" years) – different runs maybe needed over a range of exhaust parameters
- Create many (e.g. 1,000) simulated annual realizations of conc. with random number generator for emission rate
- Randomly assign an <u>emission rate multiplier</u> for each hour using the source-specific emissions distribution
- Process summary statistics over each year/receptor
- Use post-processing software to add concentrations for multiple sources plus background

21

Random Selection Process

- In some cases, peak emissions occur in groups of hours
- The form of the 1-hour NO₂ and SO₂ standard involves only the highest concentration hour in any given day
- Therefore, it is likely conservative to distribute peak emission rates randomly rather than in groups for first EMVAP version
- Use of a random selection process, such as a Monte Carlo procedure, is appropriate
- But, sources that operate in tandem can be treated with the same sequence of random numbers

Purpose and Definition

- The EMVAP system is a probabilistic <u>post-processor for</u> <u>AERMOD</u> designed to more realistically model emission sources against short-term NAAQS
- The EMVAP system consists of three modules + AERMOD:
 - EMDIST emissions analyzer : aids in determining emission inputs for AERMOD runs
 - EMVAP probabilistic emission simulator: used to randomly generate modeled concentrations based on source emissions frequencies
 - EMPOST post-processor: takes EMVAP output and performs statistical analyses, generating modeled concentrations in the form of the NAAQS

EMVAP Evaluation

- Selected 3 AERMOD Databases with variety of terrain settings
- Ran AERMOD with both actual and constant peak (allowable) hourly emissions – got 99th percentile peak daily 1-hour max pre vs. obs
- Ran EMVAP to get the same result from median value over 1000 simulated years
- Expectation: EMVAP result would be between that of actual and allowable emissions

Evaluation Databases

- Lovett Generating Station complex terrain (Hudson River Valley)
 - 1 full year test case, 8 monitors
- Clifty Creek Generating Station Ohio River gorge
 - 1 full year with 3 units with differing load profiles,
 6 monitors
- Kincaid Power Station flat corn fields of Illinois
 - Partial year case, 1 stack, 28 monitors

Lovett

Frequency Distribution of SO₂ Emissions at Lovett, 1988

Lovett Generating Station – Exit Velocity vs. Emission Rate

Residual Plot as a Function of Emissions and Exit Velocity

SO₂ Emission Cases (g/s)

EMVAP 50th Percentile Results for Lovett Generating Station

EMVAP Cases

^{*} Design Value is 99th Percentile of the daily maximum 1-hour average

Clifty Creek

Frequency Distribution of SO₂ Emissions at Clifty Creek Stack 1, 1975

Frequency Distribution of SO₂ Emissions at Clifty Creek Stack 2, 1975

Frequency Distribution of SO₂ Emissions at Clifty Creek Stack 3, 1975

EMVAP 50th Percentile Results for Clifty Creek Generating Station EMVAP results are improved of

EMVAP Cases * Design Value is 99th Percentile of the daily maximum 1-hour average

Kincaid

Frequency Distribution of SO₂ Emissions at Kincaid Power Station

EMVAP 50th Percentile Results for Kincaid Generating Station

EMVAP Cases

^{*} Design Value is 99th Percentile of the daily maximum 1-hour average

Current Limits in EMVAP

- Receptors: no effective limit (tested so far with 10000 receptors)
- Source groups to be combined: 10 (can include groups with constant emissions, or background)
- Load cases per source group: 20
- Iterations: 5000 simulated years
- Years of modeled data per iteration: 5

Typical run time is a few minutes to an hour on a standard computing platform.

EMVAP Conclusions and Status

- EMVAP is currently operational for EPRI beta testing and consideration of implementation approaches
- Evaluation against field data shows expected results: critical predictions are somewhat higher than those from actual emissions and lower than those from peak emissions
- EPRI plans to release EMVAP and SHARP to the public in late June 2012
- Additional work on EMVAP for more complex situations (start-up, oil rig drilling campaigns) is planned that uses multiple-hour emission cases

Overall Conclusions

- Extensive user experience has uncovered several areas needing attention in AERMOD
- These issues have been made more important by tightening of several key ambient standards
- Several approaches / initiatives to mitigate these modeling challenges are underway
- EPRI is providing new AERMOD tools: EMVAP, SHARP, distance debug
- A revival of the low wind speed study is planned by API
- EPA needs to give these areas attention and work with the user community to improve AERMOD

40

Bob Paine
Technical Director, Air Quality Studies
AECOM

bob.paine@aecom.com 978-905-2352