

trinityconsultants.com

Building Downwash Changes, Use of NO₂ Tiered Methods, and PM_{2.5} Modeling Issues

CIBO June 12, 2012

Tony Schroeder, CCM, CM, Managing Consultant

Introduction

AERMOD design criteria per *Model Formulation Document*

- Provide reasonable concentration estimates with minimal discontinuities
- Be user friendly with reasonable input data and computer resources
- Capture essential physical processes while remaining fundamentally simple
- Accommodate modifications with ease as the science evolves

Several recent updates to AERMOD and modeling guidance reflect these criteria

Building Downwash Changes

What is Building Downwash?

(Schulman et al, 2000)

When is Building Downwash Considered?

"EPA formula height"

 $H_{GEP} = H_b + 1.5L$

where:

H_b = building height above stack base

L = lesser of building height and projected building width

Good Engineering Practice (GEP) height

 Greater of EPA formula height or 65 meters
 Generally cannot take credit for stack height above GEP in dispersion modeling

Original AERMOD Implementation

Building downwash effects were turned off if stack height was greater than or equal to EPA formula height

This changed with version 11059 and later AERMOD versions

February 28, 2011 release

Update classified under "Miscellaneous" changes in Model Change Bulletin #4

Downwash Change

Subroutine WAKFLG was modified to no longer ignore potential downwash effects for stack heights that equal or exceed the EPA formula height

The determination of whether building downwash effects apply is based on the criterion implemented within the PRIME downwash algorithm

Downwash Change

Intent is to remove discontinuity in AERMOD building downwash treatment

- Discussed in recent EPA presentation at 10th Modeling Conference
- Discontinuity did not exist prior to use of PRIME
- What are the implications?

Downwash Example

Setup:

One building - height 24.38 m
 Building dimensions 56 m x 104 m
 H_{GEP} = H_b + 1.5L
 H_{GEP} = 24.38 m + 1.5(24.38 m) = 61 m

Downwash Example (cont'd)

Experiment varying stack height slightly below and above H_{GEP} ($H_{GEP} = 61$ m) Modeled identical emission rate

Modeled Stack Height (m)	Version 09292 1-hour Result (µg/m³)	Version 11103 1-hour Result (µg/m³)
60	178	178
62	88	160

Considerable increase in results due to simply changing from old to new executable - no physical (or meteorological data) changes!!

What is Next?

EPA intends to issue a Clarification Memo to provide further justification for the change

 Preview provided at 10th Modeling Conference

EPA may also make change to lateral zone of influence of buildings in future AERMOD update

 Currently uses 5L distance limit on structure influence zone

Use of NO₂ Tiered Methods

NO_X vs. NO₂

1-hour and annual NAAQS are for NO_2 Regulated pollutant for PSD is NO_X \bullet NO_X emissions consist of NO and NO_2 Chemical reactions occur in the atmosphere through which some NO is converted to NO_2

 NO interacts with ambient ozone to form NO₂ and oxygen

NO_X vs. NO₂

Guideline on Air Quality Models (November 2005) allows three tiered method to estimate NO to NO₂ conversion

Section 5.2.4

Modeled compliance with annual standard was generally "easy"

Assumption that 100% of NO_X is NO₂ was most commonly made

1-hour NO₂ NAAQS has resulted in closer look at three tiered methods

Three Tiers

- Tier 1: Full NO to NO₂ conversion
- Tier 2: Ambient ratio applied to Tier 1 result
 - Sometimes called Ambient Ratio Method (ARM)
 - Annual default ratio is 0.75 per GAQM
 - 1-hour default ratio is 0.80 per March 1, 2011
 Clarification Memo
- Tier 3: "Detailed Screening Methods"
 - PVMRM (plume volume molar ratio method)
 - OLM (ozone limiting method)

Tier 2 Considerations

Default ratios can by used by applicants "without additional justification" Easy to implement Still conservative in most cases ARM 2 suggested at 10th Modeling Conference

Vary ratios by NO₂ concentration and distance

Tier 3 Considerations

Case by case assessment until clearer guidance from EPA

 Need approval from EPA Regional Office to use

Three variables to input

- In-stack NO₂/NO_x ratio for each stack
- Equilibrium ratio downwind
- Background ozone

Tier 3 Considerations

Default in-stack ratio: 0.5

- March 1, 2011 Clarification Memo
- Likely very high for most boilers
- Use unit specific information if possible

Default equilibrium ratio: 0.9

Background ozone

- Constant value
- Time varying
 - Not all ozone monitors operate for entire year

Tier 3 Considerations

Get most benefit with:

- High NO_x emission rates
- Low in-stack ratios
- Low ambient ozone concentrations
- EPA states neither PVMRM nor OLM is inherently superior
 - PVMRM represents more refined treatment for isolated, elevated point sources
 - Algorithm for determining which plumes
 "complete" for ozone is not thoroughly validated

PM_{2.5} Modeling Issues

"Order of Magnitude" Dilemma

Previous controlling PM standard was 24-hour PM₁₀

- NAAQS = 150 μ g/m³
- Typical Background ~50 μg/m³ suggests 100 μg/m³ available

PM_{2.5} 24-hour standard substantially more stringent

- NAAQS = $35 \mu g/m^3$
- Typical Background ~25 μg/m³ suggests 10 μg/m³ available (including condensables)

PM_{2.5} NAAQS Permitting Implications

Need to know PM_{2.5} emissions better

- Filterable and condensable
- Most states have already required inclusion of condensables in modeling for several years
- No current requirement by states to account for chemical transformations; a minority may consider for very large projects

24-hour NAAQS background concentrations very high modeling demonstrations become very complex

Revised annual NAAQS will likely create additional nonattainment areas

Using PM₁₀=PM_{2.5} emissions is a strategy that is being phased out on multiple levels

Draft PM_{2.5} Modeling Guidance

Draft guidance originally expected to be released by EPA in fall 2011

- Delay in release contributed to delay to 10th Modeling Conference to March 2012
- Guidance discussed at that meeting, but still not officially released

Latest estimate of anticipated release data is late 2012

 Taking comments, suggestions, and feedback into account

Draft PM_{2.5} Modeling Guidance

One issue addressed is consideration of secondary formation of PM_{2.5}

Considering 4-tiered modeling approach for addressing compliance with PSD increment and NAAQS

Model Requirement	Tier	Approach
Single-source screening analysis to compare with SILs	Tier I	Primary & Secondary: AERMOD with region- (or state-) specific offset ratios
Cumulative-source analysis to compare with NAAQS and PSD increments	Tier II	Primary & Secondary: AERMOD with region- (or state-) specific offset ratios
	Tier III	Primary: AERMOD Secondary: Use of a chemistry plume model (e.g., SCICHEM)
	Tier IV	Primary: AERMOD Secondary: CAMx (or CMAQ) with fine grid and PiG for new source

Secondary PM_{2.5} Assessment Methods

Completely qualitative

- Primary and secondary concentration not co-located
- Use recent SIP related photochemical modeling for support
- Hybrid qualitative/quantitative approach
 - Add analysis of region specific offset ratios for precursor emissions

Quantitative approach

- Chemistry Plume Model (e.g., SCICHEM)
- Photochemical Model (e.g., CAMx or CMAQ)
- Only expected to be needed in handful of cases

EPA recommends consultation with Regional Office including approval of modeling protocol

Scenarios for PM_{2.5} Modeling

Case 1: No PM_{2.5} compliance demonstration is required

- If PM_{2.5} emissions < 10 tpy and NO_X and SO₂ emissions < 40 tpy</p>
- ✤ Would not trigger PSD for PM_{2.5}
- Case 2: Direct PM_{2.5} modeling only
 - If PM_{2.5} emissions > 10 tpy and NO_X and SO₂ emissions < 40 tpy</p>

Scenarios for PM_{2.5} Modeling

Case 3: Direct PM_{2.5} modeling AND account for impact of precursor emissions from the project source

 If PM_{2.5} emissions > 10 tpy and NO_X and/or SO₂ emissions > 40 tpy

Case 4: No direct PM_{2.5} modeling AND DO NOT need to account for impact of precursor emissions from the project source

 If PM_{2.5} emissions < 10 tpy and NO_X and/or SO₂ emissions > 40 tpy

Questions for PM_{2.5} Modeling

Can photochemical models be used to model single sources?

Some techniques are being considered by EPA
 Do states have resources to review expected
 photochemical modeling studies?

How will timing of PSD review be affected if analyses for secondary PM_{2.5} need to go to region or headquarters?

Questions

Tony Schroeder, CCM, CM <u>tschroeder@trinityconsultants.com</u> Indianapolis, IN 317-451-8100

