Physical Equipment Treatment Technologies 101

Bryan D. Hansen, Associate Chemical Engineer
Jason Rysavy, Senior Environmental Engineer
Burns & McDonnell

Outline

- * Proposed Effluent Limitation Guidelines (ELG)
- * Physical Treatment Technologies
 - * TSS Removal
 - * Heavy Metals Removal
 - Solids Dewatering
- * Pros / Cons of Treatment Technologies
- * Conclusions

Background

- Current ELGs last updated in 1982
- * Waste streams in current rule:
 - * Low volume wastewater
 - * Fly / Bottom ash transport wastewater
 - Once through cooling water
 - Cooling tower blow down
 - Coal pile runoff
 - Metal cleaning wastes

Background

Limits in Current ELGs

Pollutant	Maximum (ppm)	30-day Average (ppm)	
126 priority pollutants ¹	Zero discharge	Zero discharge	
Chromium ¹	0.2 mg/L	0.2 mg/L	
Copper ²	1.0 mg/L	1.0 mg/L	
Free Available Chlorine	o.5 mg/L	0.2 mg/L	
lron ²	1.0 mg/L	1.0 mg/L	
Oil and grease	20 mg/L	15 mg/L	
pH, standard units	6 – 9	6 - 9	
PCBs	Zero discharge	Zero discharge	
Total residual chlorine	0.20 mg/L		
Total suspended solids (TSS) ³	100 mg/L 30 mg/L		
Zinc¹	1.0 mg/L	1.0 mg/L	

- 1 applies to cooling tower blow down
- 2 applies to metal cleaning wastes
- 3 50 mg/L instantaneous maximum for coal pile runoff

Proposed Limits

- EPA proposed new guidelines on April 19
- Impacted waste streams from:
 - Flue gas desulfurization systems
 - Fly ash sluice water
 - * Bottom ash sluice water
 - * Flue gas mercury control systems
 - Gasification processes
 - * Combustion residual leachate
- Timing for compliance
 - * Permit cycle beginning July 1, 2017

Proposed Limits

Limits Applicable to FGD Wastewaters

Pollutant	Maximum, any 1-day	30-day Average	
Arsenic, total	8 ug/L (ppb)	6 ug/L (ppb)	
Mercury, total	242 ng/L (ppt)	119 ng/L (ppt)	
Nitrate/nitrite, as N	0.17 mg/L (ppm)	0.13 mg/L (ppm)	
Oil and grease	20 mg/L (ppm)	15 mg/L (ppm)	
pH, standard units	6 – 9	6 - 9	
Selenium, total	16 ug/L (ppb)	10 ug/L (ppb)	
Total suspended solids (TSS)	100 mg/L (ppm)	30 mg/L (ppm)	

ppm – parts per million ppb – parts per billion ppt – parts per trillion

Limits for other wastewater sources very similar to FGD wastewater.

Typical FGD Wastewater

Typical FGD Wastewater Characteristics¹

Pollutant	Minimum	Maximum	
Arsenic, total	58 ug/L (ppb)	5,070 ug/L (ppb)	
Mercury, total	7,500 ng/L (ppt)	872,000 ng/L (ppt)	
Nitrate/nitrite, as N	1 mg/L (ppm)	270 mg/L (ppm)	
Selenium, total	40 ug/L (ppb)	21,700 ug/L (ppb)	
Total suspended solids (TSS)	5,000 mg/L (ppm)	170,000 mg/L (ppm)	

ppm – parts per million ppb – parts per billion ppt – parts per trillion

1 – Data from several sources including:

- EPA 821-R-09-008, Steam Electric Power Generating, Point Source Category: Final Detailed Study Report
- EPRI 1012549, Treatment Technology Summary for Critical Pollutants of Concern in Power Plant Wastewaters

Reductions Required

Typical Reductions Required

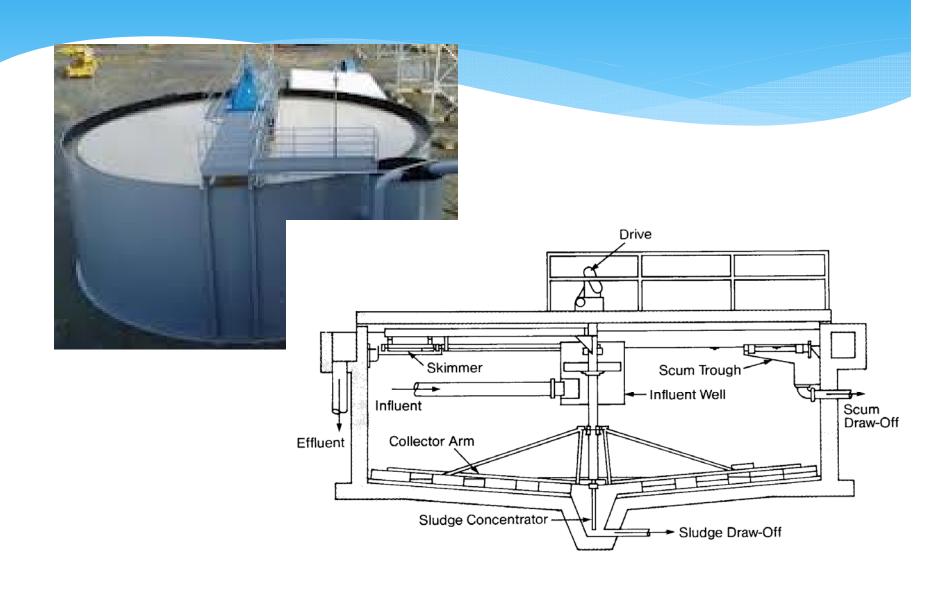
Pollutant	Minimum, %	Maximum, %	
Arsenic, total	89.6%	99.8%	
Mercury, total	98.4%	99.9%	
Nitrate/nitrite, as N	87%	99.9%	
Selenium, total	75%	99.9%	
Total suspended solids (TSS)	99.4%	99.9%	

Proposed Limits

- * No discharge allowed:
 - Fly ash sluice water
 - * Bottom ash sluice water
 - Flue gas mercury control systems
- * Similar to FGD wastewater quality:
 - * Combustion residual leachate
- * More stringent than FGD wastewater quality:
 - Gasification processes

Key Containment Sources

- * Total Suspended Solids
 - Conveyor/plant wash-down
 - Boiler fly ash and bottom ash
 - Transport wastewater bottom or fly ash
- * Heavy Metals
 - Fly and bottom ash transport
 - Flue gas desulfurization systems
 - Boiler chemical cleaning wastes
 - Coal pile runoff pond decant
 - Ash landfill leachate collection system

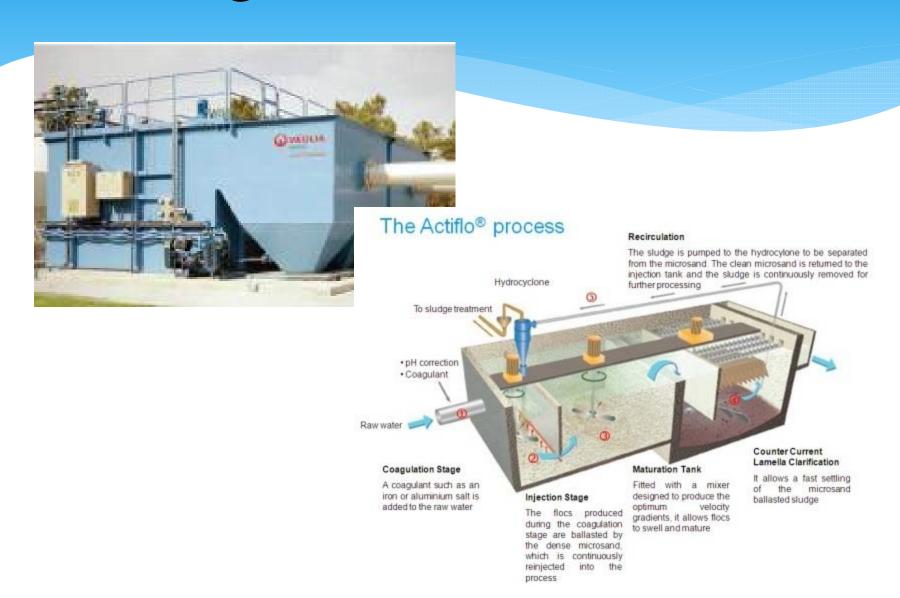

Physical/Chemical Treatment Options

- Total Suspended Solids Removal
 - Conventional Clarification
 - High Rate Clarification
 - Conventional Filtration
 - Dissolved Air Flotation

Conventional Clarification

- Clarification relies on gravity settling for water/suspended solids separation.
- * Chemicals can be added to the influent well to enhance settling
- Designs are based on surface and solids loading rates

Conventional Clarification


Conventional Clarification Advantages and Disadvantages

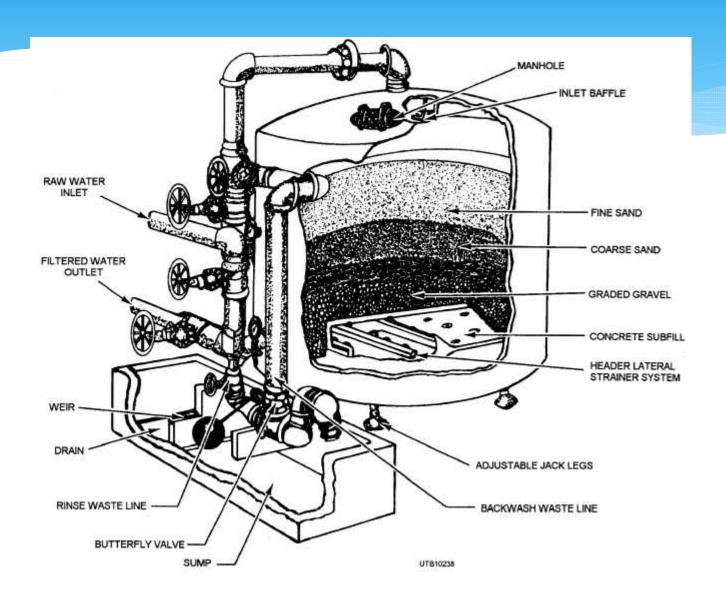
- Advantages
 - Proven technology
 - Simple operation
 - Low cost equipment and power usage
- * Disadvantages
 - * Large footprint
 - Does not handle large fluctuations in flow well

High Rate Clarification

- Utilizes micro-sand: enhances flocculation and lamella plate settling
- Rapid Mix Zone: polymer and micro-sand are added in a high energy mixing environment
- Maturation Zone: low energy mixing for floc development
- Settling Tank: micro-sand floc settles out quickly, lamella settlers further clarify water

High Rate Clarification

High Rate Clarification Advantages and Disadvantages


Advantages

- Very high loading rates reduce area required (small footprint)
- Use of microsand allows clarifier to absorb varying influent quality
- Some heavy metals removal is possible
- * Disadvantages
 - Proprietary systems (increases capital cost)
 - * High power use
 - Microsand must be replenished/replaced on a regular basis.

Conventional Filtration

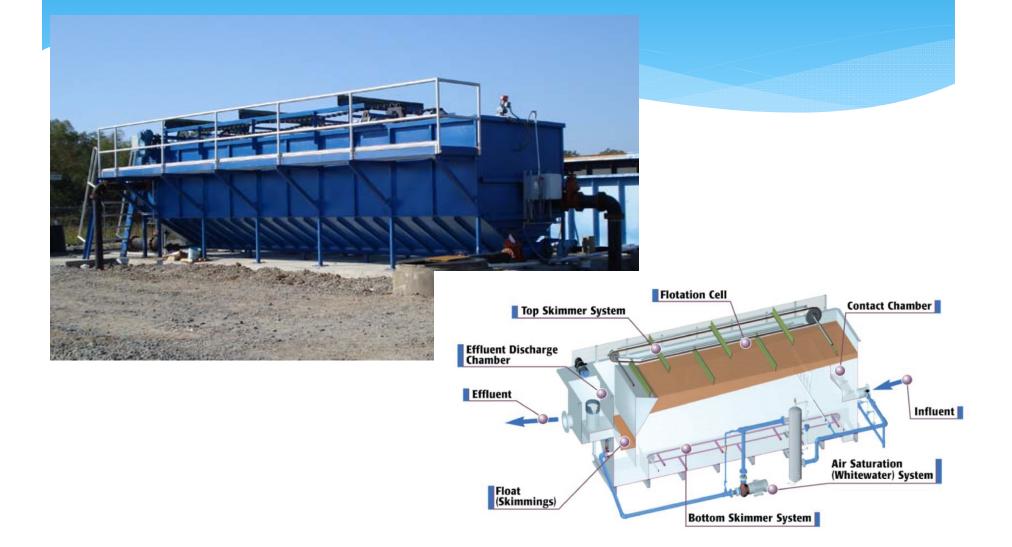
- Process of removing particulate material those accumulation on the surface or throughout the depth of the filter.
- Filters require occasional backwashing
- Backwash supply and waste water storage required
- * Vessels can utilize single or multiple types of media
- Common media includes
 - * Sand
 - * Anthracite coal
 - Granular activated carbon

Conventional Filtration

Conventional Filtration Advantages and Disadvantages

Advantages

- Most common form of TSS removal
- Relative simple operation
- Relative small footprint
- Low capital and operation cost


Disadvantages

- Backwash supply and waste water storage required
- Require occasional media addition
- * High headloss is possible depending on media size

Dissolved Air Floatation

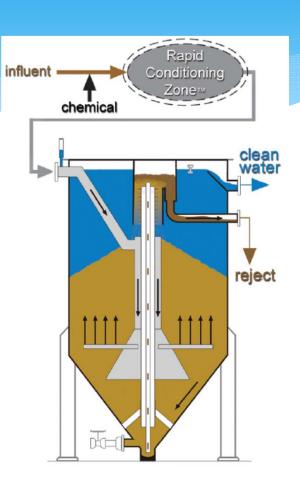
- Solids are separated by floating the floc to the water surface through the use of dissolved air bubbles
- * The "float" is scraped from the top of the reactor
- * Settle solids are removed from the bottom of the tank

Dissolved Air Floatation

Dissolved Air Floatation Advantages and Disadvantages

- Advantages
 - Proven technology
 - * Small footprint
 - Produces a concentrated waste stream
- * Disadvantages
 - High capital cost
 - Complex system to operate
 - High power consumption

Physical/Chemical Treatment Options


- * Metals Removal
 - Iron Adsorption
 - * Metal Hydroxide Precipitation
 - Iron Co-precipitation
 - Metal Sulfide Precipitation
 - * Ion Exchange
 - * Reverse Osmosis
 - Thermal Evaporation

Iron Adsorption

- Metal adsorption onto hydrous ferric oxide (HFO) coated sand
- Continuous up-flow sand filtration
- Feed ferric sulfate to coat sand
- Metals adsorbed onto coating
- Coating scoured off and removed

Iron Adsorption

- Figure showing typical up-flow sand filter
- * An air lift pump moves sand from bottom of bed to top
- Coating is scoured from sand at the top
- * Sand is returned to bed and recoated

Iron Adsorption Advantages

* Advantages:

- Various metals removed
- * Small footprint
- No moving parts
- Low volume of waste generated
- Low cost
- * Minimal operator involvement
- Some removal of TSS

Source: Blue Water Technologies

Iron Adsorption Disadvantages

- Disadvantages:
 - Chlorides inhibit mercury adsorption
 - Not a replacement for bulk TSS removal
 - Concentrated waste stream
 - Unable to achieve discharge limits by itself
 - * Could be used in combination with other processes
 - * Polishing step
 - Unable to treat for nitrates

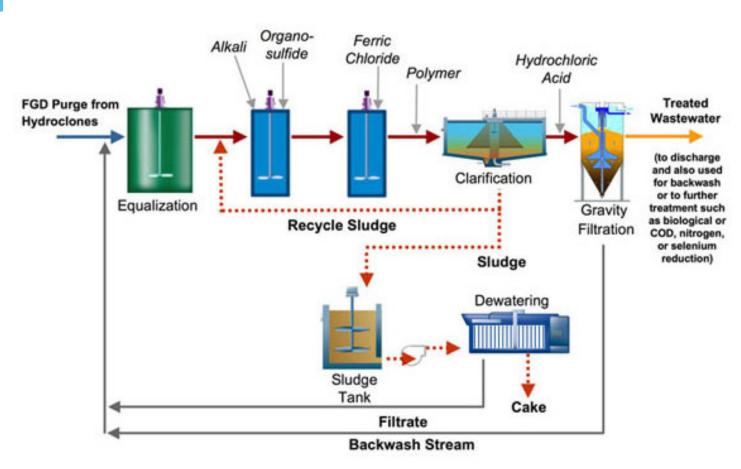
Iron Adsorption Results

Reductions Observed in Pilot Testing

Pollutant	Inlet	Outlet	Removal, %
Aluminum, total	1,740 ug/L (ppb)	16 ug/L (ppb)	99%
Arsenic, total	5 ug/L (ppb)	2 ug/L (ppb)	60%
Chromium (+6), total	6 ug/L (ppb)	0.5 ug/L (ppb)	92%
Copper, total	o.84 ug/L (ppb)	0.7 ug/L (ppb)	17%
Lead, total	3.6 ug/L (ppb)	3.2 ug/L (ppb)	11%
Mercury, total	29 ng/L (ppt)	3 ng/L (ppt)	90%
Selenium, total	24 ug/L (ppb)	15 ug/L (ppb)	38%

Metal Hydroxide Precipitation

- Various metal hydroxides are insoluble
- * Precipitation by feeding lime or sodium hydroxide
- High quantities of lime feed required
- Large volume of sludge generated
- Removal down to low ppm levels possible
- Removal not adequate to meet ELG limits
- Not recommended


Iron Co-Precipitation

- Various metals will co-precipitate when ferric hydroxide precipitates from solution
- Ferric chloride or Ferric sulfate feed
- Hydroxide feed
- * High quantities of chemical feeds required
- Large volumes of sludge generated
- Removal to low ppm high ppb levels
- Removal not adequate to meet ELG limits
- Not recommended

Metal Sulfide Precipitation

- Solubilities of metal sulfides are significantly lower than metal hydroxides
- Organo or inorganic sulfide feed
- Removal to ppb or sub-ppb levels
- Removal close to proposed ELG limits
- * Preferred method
- * May need subsequent polishing step(s)

Metal Sulfide Precipitation

Source: Siemens

Metal Sulfide Precipitation Advantages and Disadvantages

* Advantages:

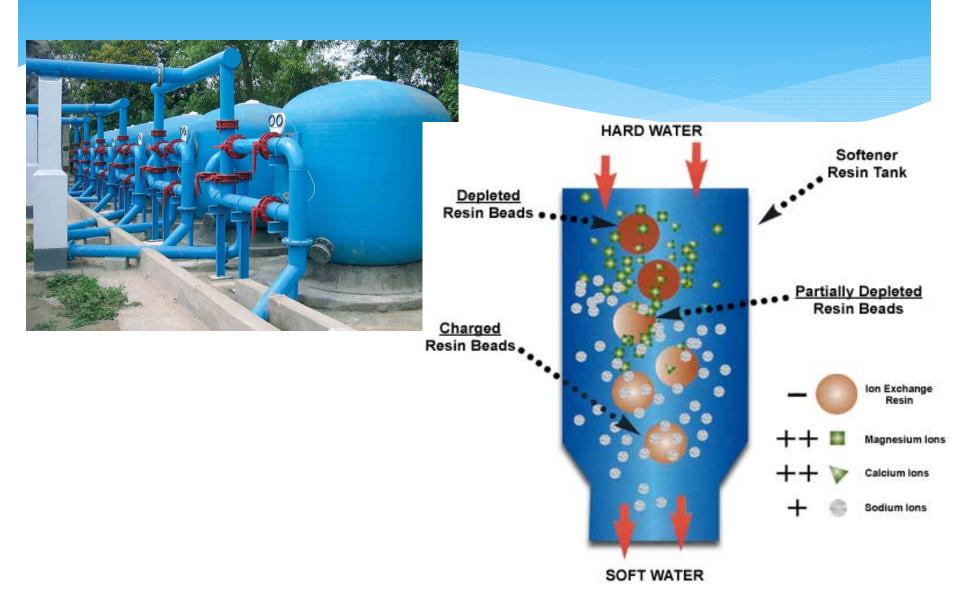
- Provides for significant concentration reductions close to ELG limits
- Metal sulfide sludges are stable

* Disadvantages:

- Large volume of waste sludge generated
- * Large footprint required
- High capital and operating costs
- * Heavy operator involvement
- Doesn't address nitrates/nitrites

Metal Sulfide Precipitation Results

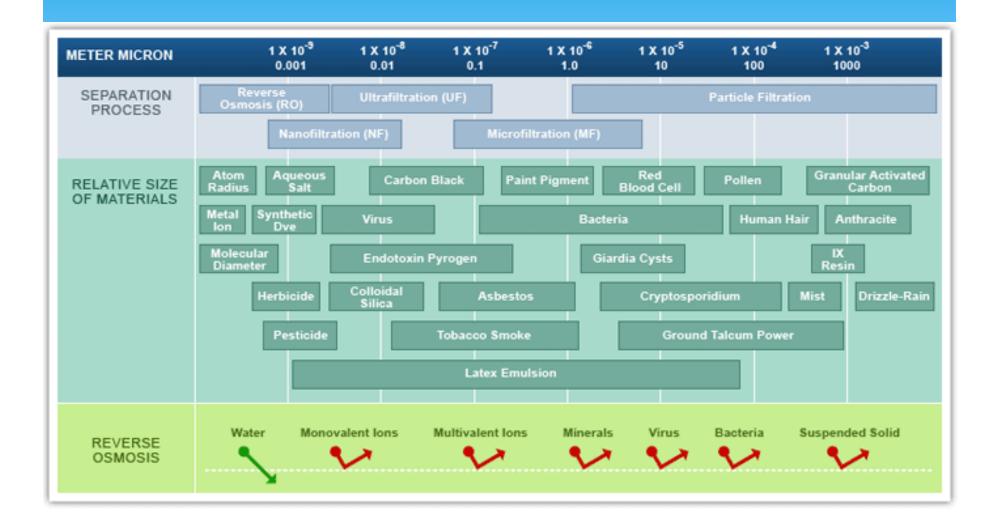
Observed Typical Reductions¹

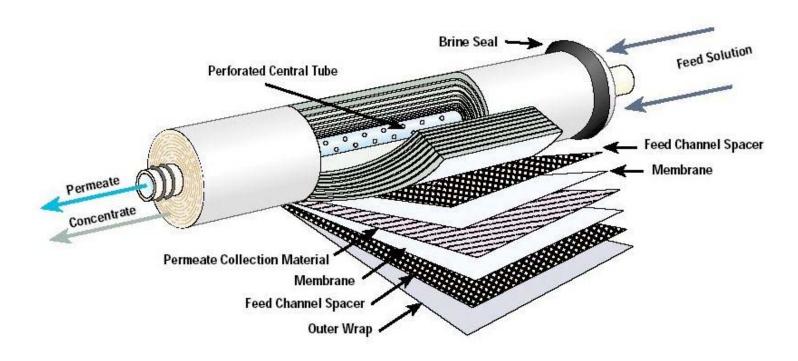

Pollutant	Inlet	Outlet	Removal, %
Arsenic, total	1,590 ug/L (ppb)	10 ug/L (ppb)	99.3%
Mercury, total	243,000 ng/L (ppt)	10,000 ng/L (ppt)	96%
Nitrate/nitrite, as N	54.5 mg/L (ppm)	36.5 mg/L (ppm)	33%
Selenium, total	2,130 ug/L (ppb)	83.6 ug/L (ppb)	96%
Total suspended solids (TSS)	7,320 mg/L (ppm)	17.5 mg/L (ppm)	99%

- 1 for systems treating FGD wastewaters; data taken from
 - EPA 821-R-09-008, Steam Electric Power Generating, Point Source Category: Final Detailed Study Report

Ion Exchange

- * Resins that are capable of exchanging particular ions with ions in a solution
- * Applications include the removal of
 - * Heavy metals
 - * Nitrogen
 - Hardness (Ca and Mg)


Ion Exchange


Ion Exchange Advantages and Disadvantages

- Advantages
 - Proven technology
 - Effect for heavy metal removal
 - Inexpensive equipment costs
- * Disadvantages
 - * High resin capital and regeneration or disposal costs
 - Not effect for organics removal
 - Resin fouling (iron, calcium sulfate, organic matter, bacterial contamination)

- * Osmosis solvent naturally moves from an area of low solute conc through a membrane to an area of high solute conc. Creates osmotic pressure.
- * RO External pressure is used to overcome osmotic pressure and reverse flow of solute.
- * Solute is retained on the pressurized side and pure solvent is allowed to pass through.

Reverse Osmosis Advantages and Disadvantages

* Advantages:

- * No future permitting issues if regulations change, again
- Recovery of high purity condensate for reuse in facility

Disadvantages:

- High capital cost
- High operating cost
- Significant electrical consumption
- * High maintenance cost
- Brine disposal is required (deep well, thermal evaporation, local POTW)

Thermal Evaporative

- * Evaporative Systems
 - Evaporation ponds
 - * Spray dryers
 - Falling film evaporators
 - Thermal or mechanical vapor compression

Thermal Evaporative Advantages and Disadvantages

* Advantages:

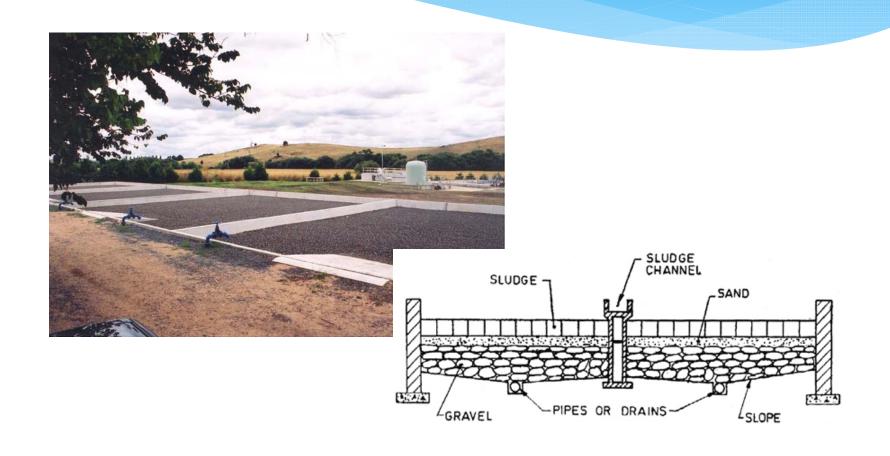
- No liquid waste to discharge
- * No future permitting issues if regulations change, again
- * Recovery of high purity condensate for reuse in facility

Disadvantages:

- High capital cost
- High operating cost
- Significant electrical consumption
- * High maintenance cost
- Dedicated operating staff

Physical/Chemical Treatment Options Continued

- Solids Dewatering
 - Drying Beds
 - * Belt Filter Press
 - Plate and Frame Filter Press
 - * Centrifuge


Solids Dewatering

- Drying Beds
- * Belt Filter Press
- * Plate and Frame Filter Press
- * Centrifuge
- * Dewatering Box

Drying Beds

- * Equipment
 - * Feed Piping
 - Filtration bed
 - Underdrain System
- * Feed Piping
 - Allowing operations staff to select and distribute sludge to drying beds
- Filtration Bed
 - * Typically sand/gravel media to allow drainage through the sludge and prevent the underdrain pipe from clogging.
- Underdrain System
 - Series of perforated pipes/laterals used to collect sludge drying bed drainage

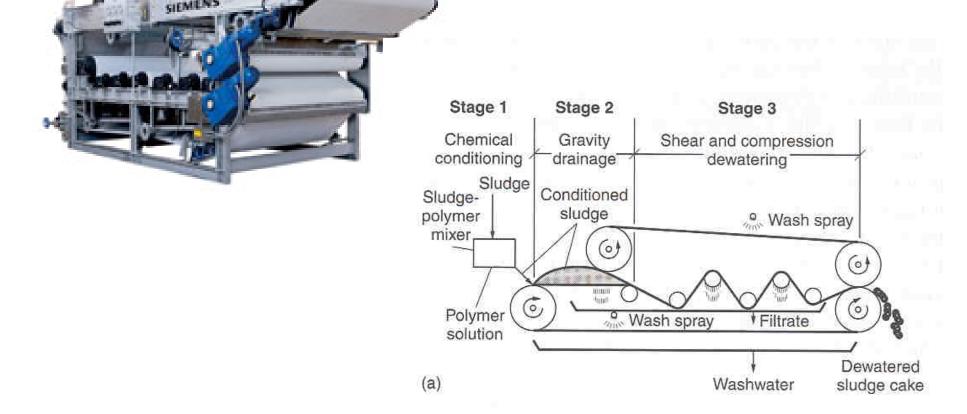
Drying Beds

Drying Beds Advantages and Disadvantages

Advantages

- Low O&M requirements
- Low capital costs
- Can handle variable loadings
- Can produce very dry solids with extend time

* Disadvantages


- Large land area required
- Solids removal equipment and contracting
- Work best in dry climates, covers required for wet areas

Belt Filter Press

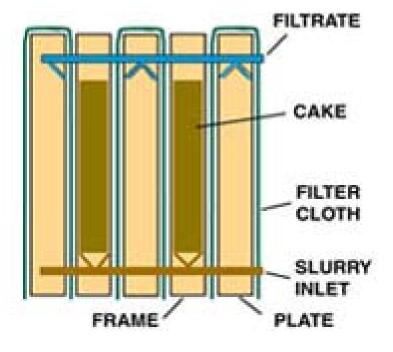
- * Equipment
 - Polymer preconditioning
 - Gravity Section
 - Pressure Section
- Polymer Preconditioning
 - * Added to destabilize interaction between water and solids
- Gravity Section
 - Drainage occurs and the sludge is allowed to thicken as it travels on a porous belt.
- * Pressure Section
 - Mechanical pressure is applied to the perforated belt, squeezing water out of the sludge through the porous belt

Belt Filter Press

Discharge Solids Conc: 15-25%

Belt Filter Press Advantages and Disadvantages

- Advantages
 - Proven technology
 - Lower capital cost
 - * Maintenance can be preformed by plant staff
- * Disadvantages
 - Large footprint requirement
 - * Cake 3 to 5% les than a centrifuge
 - Poor solids capture

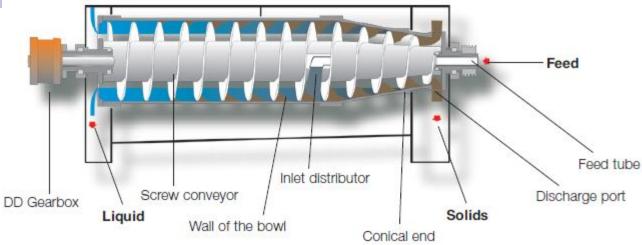

Plate and Frame Filter Press

- * Equipment
 - * Skeleton
 - * Filter Pack
- * Skeleton
 - Holds the filer packs together against pressure (100 psi is typical)
- * Filter Pack
 - * Actual liquid/solid separation
 - Series of filter elements that form chambers
 - Process slurry is pumped under pressure into the filter pack, liquid passes through the filter pack leaving solids behind

Plate and Frame Filter Press

20-30%

Plate and Frame Filter Press Advantages and Disadvantages


- Advantages
 - Proven technology
 - Produces high solids concentrations
 - Clean operation
- * Disadvantages
 - High capital cost
 - Large footprint requirement
 - Typically run in batch processes

Centrifuge

- * Equipment
 - Polymer preconditioning
 - * Bowl
 - * Screw
 - * Drives
- Polymer Preconditiong
 - Added to destabilize interaction between water and solids
- * Bowl
 - * Sludge particles are pressed against the bowl and dewatering through centrifugal force (2,500-3,500 rpm)
- * Screw
 - Moves dewater sludge to the centrifuge discharge
- * Drives
 - Responsible for the bowl and screw rotation

Centrifuge

Centrifuges Advantages and Disadvantages

Advantages

- Proven technology
- Recent advances in backdrive technology reduces HP requirement/use
- Small footprint
- Clean operation
- * Disadvantages
 - High energy and chemical usage
 - High capital cost
 - Skilled mechanical staff required
 - Centrate management

Dewatering Box

- * Equipment
 - Polymer preconditioning
 - * Bowl
 - * Screw
 - * Drives
- Polymer Preconditiong
 - * Added to destabilize interaction between water and solids
- * Bowl
 - * Sludge particles are pressed against the bowl and dewatering through centrifugal force (2,500-3,500 rpm)
- * Screw
 - Moves dewater sludge to the centrifuge discharge
- * Drives
 - Responsible for the bowl and screw rotation

Conclusions

- * Many options for treatment of:
 - * Total suspended solids
 - * Heavy metals
 - Solids dewatering
- May not get to proposed ELG limitations with a single treatment systemo
- * Wastewater treatment may need to consist of multiple stages of treatment to address different constituents
- * Evaluate plant specifics to determine best approach

Questions?

Bryan D. Hansen, P.E.

bhansen@burnsmcd.com

303-474-2236

Jason P. Rysavy, P.E.

jrysavy@burnsmcd.com

303-362-2332

Burns & McDonnell 9785 Maroon Circle, Suite 400 Centennial, CO 80112

