
FMC PerNOxide Technology For NOx Control

September 11, 2012 CIBO Technical Focus Group Environmental & Energy Committee Meetings

PerNOxide is a mark of FMC Corporation


Agenda

- Introduction to FMC
- Introduction to NOx control
- FMC PerNOxide technology
- Hydrogen peroxide (H₂O₂)
- Status of technology
- Full scale demonstration equipment
- Takeaways and path forward

FMC Corporation

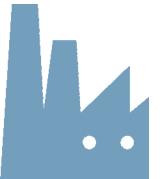
ENVIRONMENTAL SOLUTIONS

- Global diversified chemical company serving the agricultural, industrial, and specialty markets
- 2011 Sales Revenue \$3.4 Billion
- Leading global producer of hydrogen peroxide
- JV partner for supply of EnProve[™] sodium-based sorbents to the industrial and utility markets


FMC Confidential

FMC ESD

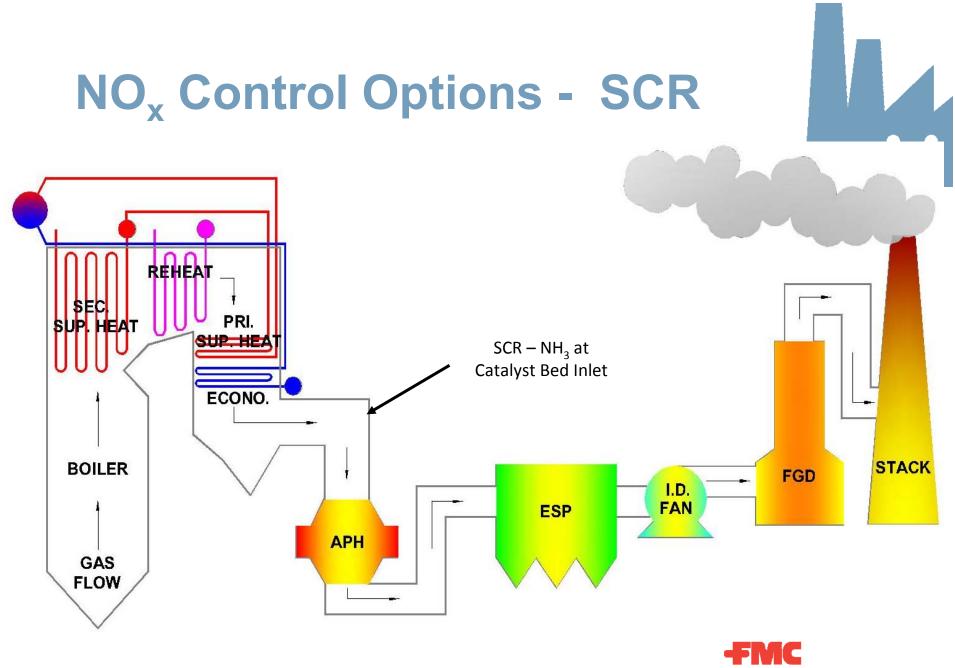
- New Environmental Solutions Division
- First new division in over 10 years
- Three environmental platforms
 - Water and waste water
 - Soil and ground remediation
 - Air pollution control
 - PerNOxide
 - Soda ash
 - URS SBS SO3 control technology
 - Wet FGD scrubber slurry/chemistry control
 - FMC JV for EnProve sodium sorbents


Safety Commitment

- FMC is a proud member of the American Chemistry Council (ACC) Responsible Care[®] program
- Continuing focus on improving the safe manufacture, handling, use, and security of our products throughout their life cycle

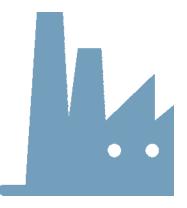
Introduction

- Regulatory requirements are creating a need for coal fired boilers to further reduce NO_x emissions
- A technology void exists for units seeking NO_x reductions of 30-70% with minimal capital investment
- FMC is developing a cost effective NO_x control technology that also reduces Hg


Post Combustion Technologies

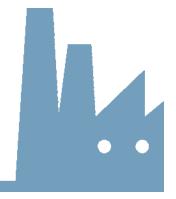
- Selective Catalytic Reduction SCR
- Selective Non-Catalytic Reduction SNCR
- FMC's PerNOxide technology

SCR

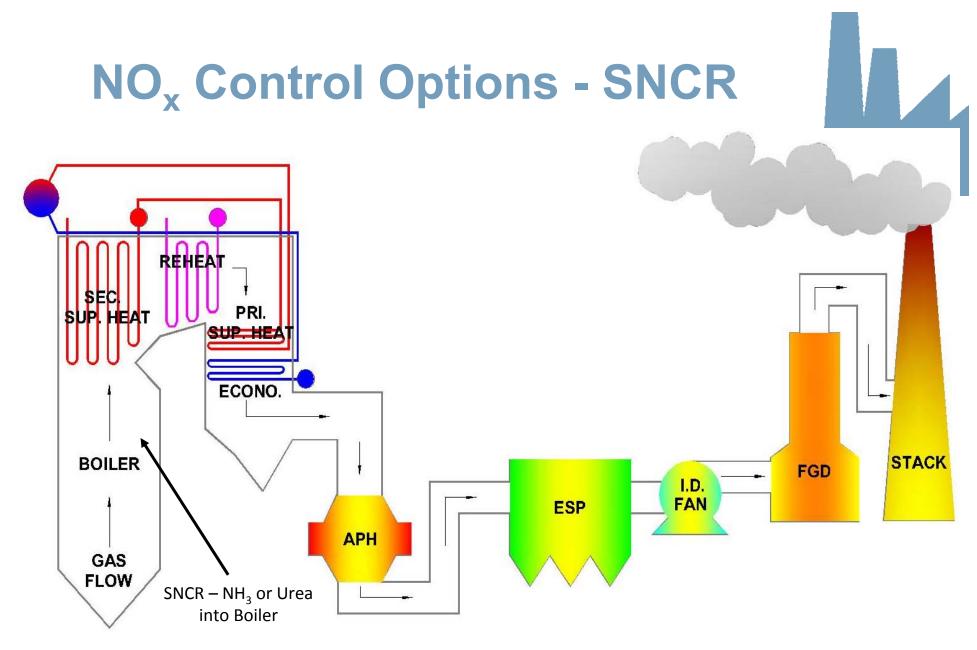

ENVIRONMENTAL SOLUTIONS

SCR

- Inject NH₃ ahead of catalyst
 Anhydrous or aqueous
- NO chemically reduced to N₂
- 4NO + 4NH₃ + O₂ \rightarrow 4N₂ + 6H₂O
- NO + NO₂ + 2NH₃ \rightarrow 2N₂ + 3H₂O
- NOx reductions of 75-90%
- Excess NH₃ can react with SO₃ to form ammonium bisulfate (NH₄HSO₄)

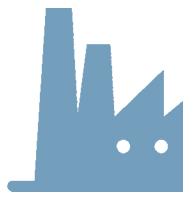

Causes air preheater and catalyst fouling

Catalyst pluggage (ash) and poisoning (As)



ENVIRONMENTAL SOLUTIONS

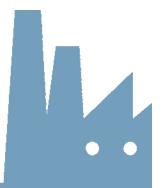
SNCR



SNCR

- •••
- Injection at high temperatures in boiler.
- Injection temperature is critical ~1400 2000 °F
- Usually multiple injection levels to get close to temperature "sweet spot" under varying operating conditions
- Urea or NH₃ injected. No catalyst needed
- $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$
- $2NO + (NH_2)_2CO + 1/2O_2 \rightarrow 2N_2 + 2H_2O + CO_2$
- NOx reductions of 15-40%

PerNOxide Technology


FMC NO_x Technology

- NASA Kennedy Space Center (KSC) developed technology in conjunction with University of Central Florida
- FMC Corporation is the exclusive licensee for US Patent # 6,676,912
- Use of hydrogen peroxide (H₂O₂) to oxidize NO and Hg° to forms for capture in downstream equipment

Hydrogen Peroxide (H₂O₂)

- Strong, environmentally friendly oxidizing agent
- Major end uses: pulp & paper, chemicals, food, hair treatment, antiseptic, and electronics
- Product provided in various grades and concentrations

Hydrogen Peroxide (H₂O₂)

- Strong, environmentally friendly oxidizing agent
- Major end uses: pulp & paper, chemicals, food, hair treatment, antiseptic, and electronics
- Product provided in various grades and concentrations
- FMC is a leading global supplier

Peroxide Characteristics

- Specific gravity: 1.2
- Weight: 10 #/gal @ 50% concentration
- Apparent pH: ≤ 3.0
- Freezing point: 62 °F @ 50% concentration

Hydrogen Peroxide Chemistry

(1) Decomposition Reaction

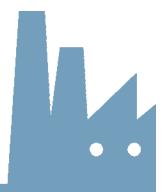
(2) Catalytic activation at elevated temperatures

 $H_2O_2 \rightarrow 2 OH$ or $H_2O_2 \rightarrow OOH$ + H

(3) Simplified oxidation of NO with H_2O_2

$$NO_2$$

 N_2O_5
 HNO_2
 HNO_3

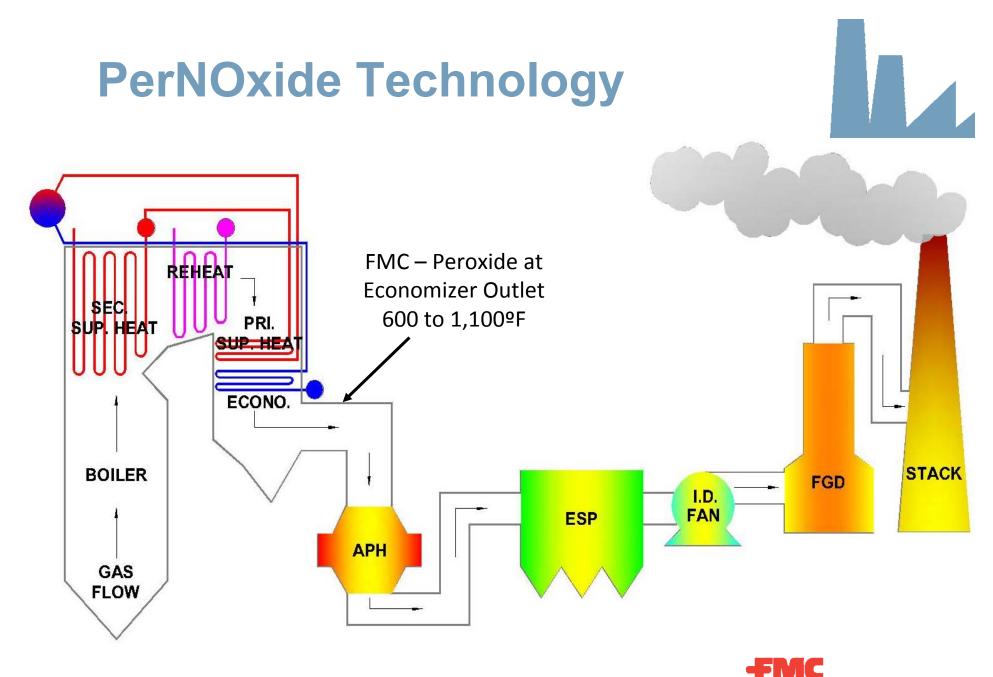


PerNOxide – A Two Step Process

- Oxidation of NO
- Capture of oxidized NO species

Oxidation Performance

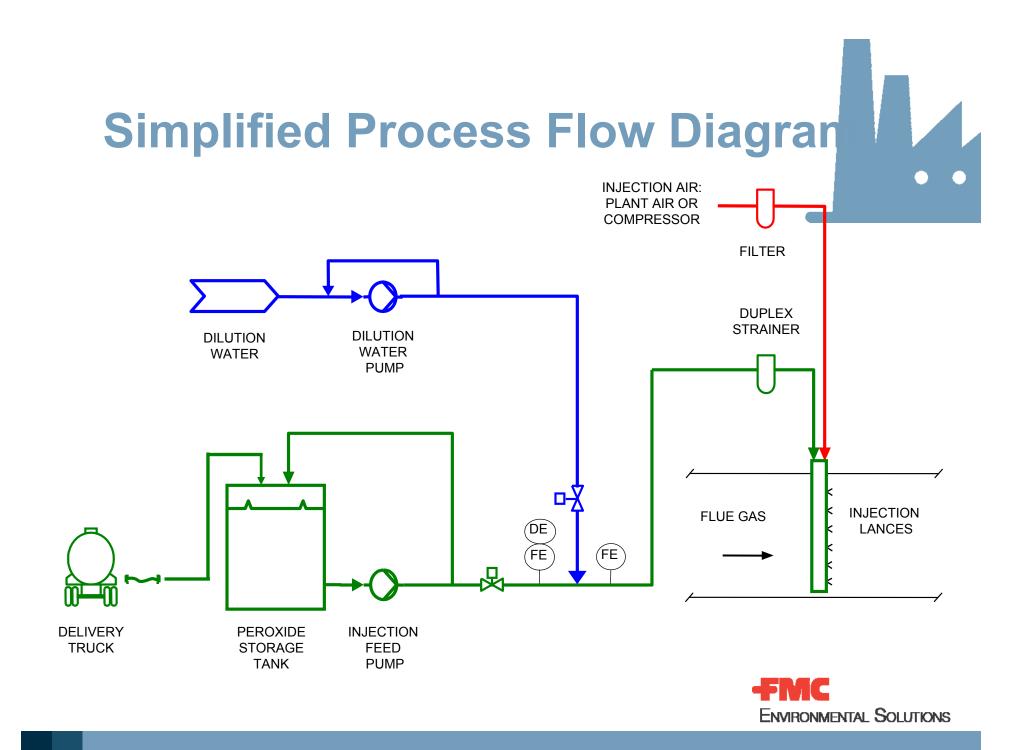
- Oxidation of NO up to 80% has been achieved in laboratory, pilot, and full scale demonstrations
- Key to technology is capture of nitrogen species in downstream FGD equipment



FMC Confidential

Nitrogen Species Capture Option


- Wet lime/limestone/sodium scrubbers
- Circulating dry scrubbers (CDS)
- Spray dryer absorbers (SDA)
- Other dry/semi-dry scrubbers
- Dry injection (lime/trona) with ESP or FF


ENVIRONMENTAL SOLUTIONS

Peroxide Injection

- Injected into duct between economizer and APH inlet
- Concentration controlled to achieve required NOx reduction
- Two fluid nozzles (air assisted atomization) used to produce fine droplets
- Water evaporates and peroxide dissociates
- NO oxidized

NOx Capture by Scrubbers

- Not new. Considered since 1970s when scrubbers became popular and technologists were looking for "multipollutant" use of scrubbers
- NO is not water soluble
- Oxidation of NO can lead to many N species

 $-NO_2$, N_2O_5 , HNO_3

- NO₂ is water soluble, but less than SO₂
- N₂O₅ reacts with H₂O to form HNO₃, which is highly water soluble

NOx Reduction Capability

- Wet scrubbers: up to 70%
- Dry scrubbers: up to 50%

Wet Scrubber Development

- 3 full scale demonstrations
 - Up to 80% NO oxidation
 - Only 20-30% reduction due to unforeseen chemistry issues
- FMC & URS Collaboration
 - Process development
 - Technology demonstrations
 - Commercial applications
- FMC/URS testing
 - 2 lab test programs
 - 1 pilot scale program
 - 1 full scale demonstration scheduled for 10/12

FMC Environmental Solutions

Wet Scrubber Performance

- PerNOxide works best with high sulfite scrubber chemistries
 - Lime
 - Magnesium lime
 - Inhibited oxidation limestone
 - Natural oxidation limestone

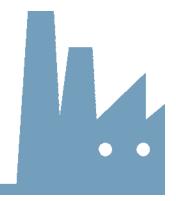
Dry Scrubber Development

- Energy & Environmental Research Center
- Pilot combustor and SDA/FF
- Primary sulfite formation
- Better oxidation and capture with
 - Higher inlet temperature
 - Higher SR
 - Longer treatment time
- Small variations with coal
- Still need further full scale data

FMC Confidential

PerNOxide Technology Advanta

- Lower capital & maintenance costs than SCR
- Higher removal efficiencies than SNCR
- Operational flexibility
- Mercury oxidation and capture
- Immune to SCR catalyst poisons
- Environmentally friendly reagent
- Limited downtime for installation
- Project execution < 1 year

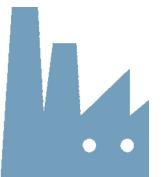


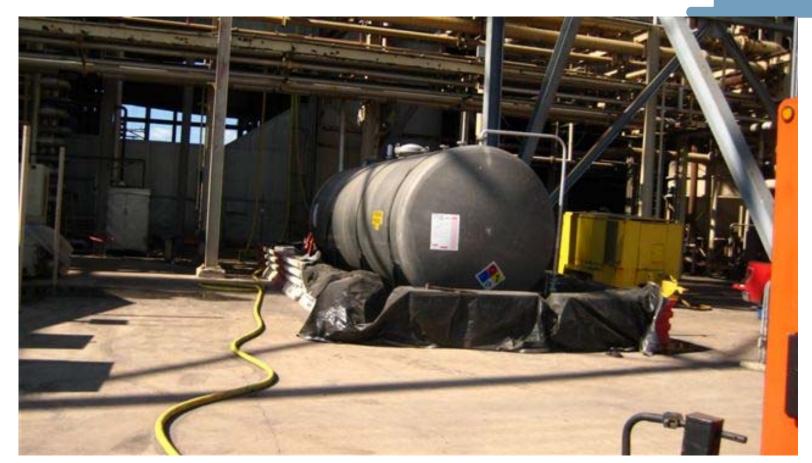
PerNOxide Technology Challenges

- Developing technology
- Close to commercialization
- May require modification to FGD chemistry
- Possible increase in NO₂ emissions
- Possible increase in SO₃ formation
- Waste stream management

PerNOxide Bridges NO_x Control Gap

	SNCR	PerNOxide	SCR
NO _x Removal	20-30%	30-70%	75-90%
Capital Costs	Moderate	Low	High
Boiler Impacts	Yes	No	No
Operational Issues	Ammonia Slip	Potential Visible	Ammonia Slip &
		Emissions	SO ₃ Generation




FMC Trial Scope

- Peroxide storage tank & containment
- Chemical delivery system
 - Pumps
 - Valves
 - Controllers
 - Interconnecting piping
- Spray lances and nozzles
- Contracted testing services

Storage Tank

Injection Skid and Control

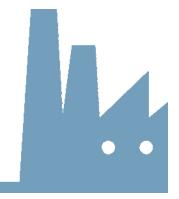
Spray Lances

Injection Ports

Applications

- Stand alone system
- In conjunction with
 - Low NOx burners (LNB)
 - Over-fired air systems
 - SNCR
 - SCR

FMC Confidential


NOx Technology Comparison

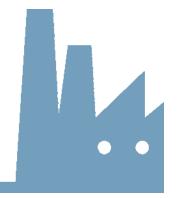
	SNCR	PerNOxide	SCR
Reagent	Urea	Peroxide	Ammonia
Nox Removal	15-40%	30-70%	75-90%
Capital Cost	Low	Low	High
Operating Cost	Low	Mid-High	Mid

PerNOxide offers moderate NOx reductions with low upfront capital investment

FMC ENVIRONMENTAL SOLUTIONS

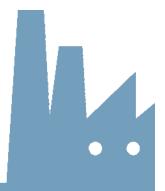
Costs

- Capital
 - -\$1-5M
 - Large variation due to site requirements
- Operating
 - \$2500 3500 per ton NOx removed

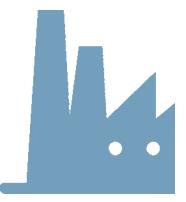


Summary

- •••
- PerNOxide technology is a 2-step process
 - Oxidation of NO to NO_2 and other N-O forms
 - Capture of NO₂ and other N-O forms
- High NO oxidation achieved using peroxide
- Capture of NO₂ is critical
 - Key variables: Scrubber mass transfer, dissolved sulfite, pH, & additives
 - Modification of scrubbing liquor composition may be required


Takeaways

- Soon to be commercialized
- Low capital cost solution for NOx control
- NOx reductions up to 70%
- Chemical costs only as much as needed
- Easy to demonstrate and establish performance on a specific unit



 FMC is seeking opportunities for full scale demonstrations on both wet and dry scrubber applications

Questions???

Bob Crynack robert. crynack@ fmc.com

