

Building Efficiency

Helping people achieve

Rajesh Dixit CIBO, Arlington VA September 10th, 2013

Building Efficiency Part of a \$42B world-class organization – Johnson Controls

Our Vision

Creating a Comfortable, Safe and Sustainable World

Our Mission

Exceeding our Customers' Increasing Expectations

Our Values

Integrity · Customer Satisfaction Employee Engagement · Innovation · Sustainability

2 Johnson Controls April 12, 2013

Recognized as a global leader and top corporate citizen

CR's 100 Best Comment Best Corporate Citizens		FORTUNE 500 Largest American Companies		Lar Cor	Forbes Global 2000 gest Global mpanies	BILLION DOLLAR ROUNDTABLE Corporate Supply Chain Diversity Corporate Supply Chain Diversity			aplecroft mate Innovation Indexes Performers
9	Campbell Soup Co.	63	Safeway	276	Duke Energy US	AT&T	1		General Electric
10	Coca-Cola Enterprises	64	Cisco Systems	277	Legal and General Group <i>UK</i>	Boeing		,	
11	IBM Corp.	65	Sears Holdings	278	Mitsubishi Electric	Chrysler Dell	3		Johnson Controls
12	Walt Disney Co.	66	Walt Disney	279	Japan Husky Energy Canada	Ford Motor Corporation	4		Ford Motor Co.
13	Spectra Energy Corp.	67	Johnson Controls	280	Johnson Controls	Honda North America	5	;	Intel Corp.
14	Johnson Controls	68	Morgan Stanley	281	SEB Sweden	Johnson Controls	6	;	Hess Corp.
15	Coca-Cola Co.	60	Succo	202	Svenska	Johnson & Johnson		,	Air Products &
16	E. I. DuPont De	09	39500	202	Handelsbanken, Sweden	Lockheed Martin			Chemicals
		70	FedEx	283	Sasol South Africa	Microsoft	8	6	Praxair Inc.
17	Johnson & Johnson	71	Abbott Labs	284	Taiwan Semiconductor <i>Taiwan</i>	Procter & Gamble Toyota Motor NA	9)	United Technologies
18	Kimberly-Clark Corp.	72	DuPont	285	Indian Oil India	Verizon Communications Wal-Mart Stores	1	0	Audodesk Inc.

Building Efficiency You may know us for this ...

4 Johnson Controls April 12, 2013

Though we are so much more ... We are in the business of Building Efficiency

\$14.7 billion revenue in 2012

people with over 5000+ energy experts including 1000+ LEED professionals

60,000

Local everywhere

7 Continents 152 Countries 697 Branches

20 million square feet of LEED Certified facilities space for our customers	More than \$7.5 billion in savings guarantees	19 million metric tons of greenhouse gas emissions reduced since 2000; equivalent to more than 3 million acres of pine forest	100+ renewable energy projects annually — solar, wind, geothermal	1.8 billion square feet of real estate managed across more than 30,000 sites
---	--	--	--	--

No matter the size, complexity or location

7 Johnson Controls April 12, 2013

Including nearly 90% of the world's tallest buildings

And some of the most iconic spaces and places

Including our own

we 'walk the talk' when it comes to energy savings

World's largest energy efficiency company

- 30% reduction in corporate carbon intensity between 2002 and 2008
- More than \$5M energy savings in our own facilities

Johnson Controls headquarters Largest concentration of LEED Platinum buildings on one site

We are building on more than 125 years of innovation

11 Johnson Controls

Chiller Solutions

Leading the Way- Chiller Solutions

A more comfortable, safe and sustainable world

- Global chilled water solutions provider
- Most energy efficient solutions
- Widest range of offerings to meet every customer's needs

Diverse and Broad Solution Offerings

Water-Cooled

Diverse and Broad Solution Offerings

Air-Cooled Scroll & Screw Chillers

Diverse and Broad Solution Offerings-

Water-Cooled Scroll & Screw Chillers

BY JOHNSON CONTROLS

Diverse and Broad Solution Offerings-

Absorption Chillers

18

Diverse and Broad Solution Offerings-

Water-Cooled Centrifugal Chillers

*** YORK**

BY JOHNSON CONTROLS

Controls

Environmental Leadership

Johnson

Controls

Innovation Example- Variable Speed Drive for Chillers

- Taking advantage of real world conditions
- As weather conditions and building load change, design conditions exist only 1% of the operating hours
- Applying VSD to chillers reduces energy consumption by 30%
- Globally commissioned over 10,000 VSDs

EPA's Prestigious Climate Protection Award

YORK VSD chillers save 600,000 tons of CO₂ emissions annually

Innovation in Action

1951 Empire State Building New York, NY

1951 Installation

- 5,300 TR (18,640 kW)
- YORK® YAC Chillers
- Electric Motor Drives

Innovation in Action

1951 Empire State Building New York, NY

Now... Becoming one of the most energy efficient buildings in the world 2009 LEED Gold certification Retrofitting 4 existing industrial electric chillers Upgrading controls Adding variable speed drives and primary loop bypass. LEED GOLD

Energy Diversity

No ODP/ Low GWP Gases

Decision Criteria for Future Long Term Refrigerant Offerings

- 1. Safety
- 2. Efficiency
- 3. Environmental Impact
- 4. Availability

Conserving Water

- Water saving heat recovery solution
- Most efficient air-cooled product offerings
- Air cooled radiators available when water is not available
- Diversity in water source options
 - o Fresh Water
 - Low Chloride Treated Sewage
 - High Chloride Treated Sewage
 - Brackish or Seawater

Titanium Tubing

Ceramic Coating

Delivering What is Promised

Reliable Product

- Designed for 30 year life
- Numerous installations with chiller running successfully for over 50 years
- IBC Seismic Certification
 - Only company in the industry to conduct a shaker table test
 - OSHPD Special Seismic Certification

Proven Performance

Zero failure rate for AHRI witness performance test since inception of AHRI program

By Your Side- Customer for Life

INGENUITY WELCOME

YK Centrifugal Chiller

250 - 3000 Tons (880- 10550 kW)

- Single Compressor
- HFC- 134a refrigerant
- 55 F Entering Condenser Water
- Great off design performance
- Open Drive
- Variable Speed Drive
- Heat Pump Capability
- Heat Recovery Capability

YMC² Centrifugal Chiller

215 - 380 Tons (755 - 1340 kW)

Permanent magnet motor with active magnetic bearing technology

- HFC- 134a refrigerant
- Oil Free
- Great off design performance
- Excellent Sound Performance:73 dBA or less

YD Centrifugal Chiller

2000 - 6000 Tons (7000- 21100 kW)

- Dual Compressors in parallel
- HFC- 134a refrigerant
- Smallest footprint per cooling ton
- Great off design performance

CYK Centrifugal Chiller

500 - 2500 Tons (1760- 8800 kW)

- Two compressors in series
- HFC- 134a refrigerant
- Single or dual evaporator
- Ideal for high lift applications
- Air- cooled radiator capability
- Ice thermal storage capability
- Low temperature process capability

YST Centrifugal Chiller

700 - 2800 Tons (2460- 9850 kW)

- Centrifugal Compressor
- Steam Turbine Drive (50-400 PSIG)
- HFC- 134a refrigerant
- Variable Speed
- Great off design performance
- 55 F Entering Condenser Water
- 3 GPM/Ton Condenser Flow
- Variable Primary Flow
- < 32 F Leaving Chilled Water</p>
- Long life

Customer Applications – YST

Installations – 160+ chillers – 260,000+ tons

Combined Heat and Power (CHP)

Commercial Office Bldg's

- District Steam
- Footprint / Rigging, Access

Process Applications

- Pharmaceuticals, Electronics manufactures
- Medical Centers
 - Heating, Food service, Sterilization, Laundry Services
- Higher Education
 - Steam heating, Food service
- Hybrid Plants
- Turbine Inlet Air Cooling

Turbine Inlet air cooling with YST

Titan OM Centrifugal Chiller

3000 - 5500 Tons (10550- 19350 kW)

- Custom designed
- Industrial Construction
- Multi-Stage Centrifugal Compressor
- Alternative drives, multiple drivelines in same unit (steam, gas, electric)
- Ideal for district cooling
- Brine cooling, air-cooled condensing, radiator cooling
- 40 to 50-year life

Single Stage Absorption Chillers

- Manufactured in North America since 1958
- Over 4,000 Units Installed Worldwide

Application Considerations

COP = 0.70

Typically driven by low pressure steam (15 psig) or hot water (180°F -266°F)

Minimum Leaving Chilled Water Temperature 40°F (4°C)

Minimum Entering Condenser Water Temperature 45°F (7°C)

Typical Condenser Water flow rate: 3.6 GPM/Ton

Class I Div II Group C & D: Refinery & Petrochemicals

Two Stage Absorption Chillers

- Made by YORK since 1991
- Licensed from Hitachi Japan
- Over 1,200 Units Installed Worldwide

Application Considerations

- COP = 1.00 1.20
- High pressure steam (45 125 psig) or direct firing of natural gas/oil
- Minimum Leaving Chilled Water Temp. 40°F
- Minimum Entering Condenser Water Temperature 68°F
- Typical Condenser Water flow rate: 4.0 GPM/Ton
- Chiller-Heater or Simultaneous chilled and hot (heating) water up to 180°F

LOW NOx 9 PPM Natural Gas Burner

Sustainable Benefits

Water as the refrigerant

Quiet and vibration free

Great turndown (10% to 100%)

Clean burning natural gas

Harnesses waste steam or hot water

Reduced electric energy and infrastructure charges

Reduced emissions

Traditional vs. Combined Heat and Power (CHP)

CHP – Thermally activated cooling technologies

Combined Heat and Power Wisdom

- Buildings over 100,000 sq.ft
- High load factor (maximize both power and thermal load factor)
- 'Thermal First' approach to maximize the load factor
- Cooling Thermal/Electric Ratio

THERMAL REVENUE REPRESENTS THE PROFIT

Thermal-Electric Ratio

Prime Mover	Electrical Power Output	T/E Ratio (Tons/KW)	Cooling Technology
Combustion Gas Turbine	> 5 MW	0.6 – 0.7	Steam Turbine Centrifugal Two Stage Absorption
Micro-Turbine	< 1 MW	0.4 - 0.5	Single Stage Absorption
Internal Combustion Engine	0.2 -3 MW	0.2 – 0.4	Single Stage Absorption
Fuel Cell	0.25 – 1 MW	0.1 – 0.2	Single, Two Stage Absorption

Gas Engine Driven Chillers

MOST EFFICIENT CHILLER

500 - 800 tons

1200 - 1800 tons

Site vs. Source COP

Electric motor driven centrifugal	COP SITE 6 10	COP SOURCE 1 53
s Engine Driven Centrifugal Chiller	2.10	1.93
eam Turbine Driven Centrifugal Chiller	1.20	1.09
Two stage direct fired Two stage steam fired	1.00	0.91 1.09
bsorption Chillers Single stage	0.70	0.64
HERMAL CHILLERS	COP SITE	COP SOURCE

We create buildings and environments that help people achieve

Because when buildings work better ... people work better

THANK YOU

PV Utilizes a Fraction of the Solar Potential

Solar Cogeneration Captures 5X Energy Vs. PV

Lowest Cost PV + "Free" Solar Heat

Low Cost Planar Optics

80% Area Cost Reduction → Lowest Cost PV

Core Technology: High-Efficiency PV-Thermal

Modular Concentrator

- Low-cost single-axis trackingPlanar optics*
- Snap-in-place assembly*

High-efficiency with Integrated Heat-Recovery

High efficiency (15% PV + 60% heat)
Proprietary thermal-electrical stack*
Direct-laminated extruded channel*

Low Cost: Efficient PV, Valuable Heat

* Patent-pending: 12/712,122 , 12/788,048 , 12/622,416 , 12/744,436 , 12/781,706, 61/347,585, 13/291,531

Actively Cooled Concentrating Solar

Lowest Cost Solar Electricity & Free Thermal Power

58 Johnson Controls

Solar Combined Heat Power Cooling Solution

Solar Cooling

* Cooling power per sqm of solar array

PV +"Free" Heat → 50% More Cooling

@1000 W/m² Solar					
	PV	Solar Hot Water	Solar Cogeneration		
	Electricity	415F Steam	Electricity	212F Hot water	
Efficiency	15%	60%	15%	60%	
Energy Captured	<i>150 W</i> /m²	<i>600 W</i> //m²	<i>150 W</i> /m²	<i>600 W</i> /m²	
Integration		2E Abs Chiller		1E Abs Chiller	
COP*	5X	1.3X	5X	0.7X	Total
Cooling	750 W/m²	780 W/m ²	750 W/m² <mark>-</mark>	420 W/m²	1170 W/m²
50% More Cooling Output than Solar PV or Thermal					

Solar Cogen Cooling Project Metrics

Cooling Delivered		100 tons	500 tons	1000 tons
Solar Electrical Capacity ¹	Electric Nameplate Power (KW)	200	950	2000
Area Cooled ²	ft ²	28,000	140,000	280,000
Space Required ³	ft ²	30,000	150,000	300,000
Greenhouse Gas Emissions Reduction ⁴	Kg CO ₂	242,000	1,127,000	2,250,000

1 Based in Phoenix, AZ.

2 Based on average ASHRAE cooling load at 280 sf/ton

3 Includes array row spacing

4 Based on average typical grid emissions factor

Lifecycle GHG Emissions

g CO₂ per kWh_e Delivered

- * Fthenakis, et al., "Emissions from Photovoltaic Lifecycles", Environmental Science and Technology, 2008, 42, 2168, 2172.
- ** Indirect emission reduction factors from U.S. Department of Energy, EIA. Voluntary Reporting of Greenhouse Gases Program. See: http://www.eia.doe.gov/oiaf/1605/pdf/Appendix%20F_r071023.pdf, including emissions avoided from generation at the margin (from fossil-fuel sources) and indirect transmission and distribution losses.
- *** Marginal electricity factor from California Environmental Protection Agency Air Resources Board, Detailed California-Modified GREET Pathway for California Average and Marginal Electricity. Version 2.1, February 27, 2009

Target Sectors

Technology	Healthcare	Food & Beverage	Campus
Manufacturing	Pharmaceutical	Food processing	University
Distribution	Hospital	Dairy	Corporate complex
Data center	Laboratory	Refrigeration	
Research & development			
	Technology Manufacturing Distribution Data center Research & development	TechnologyHealthcareManufacturingPharmaceuticalDistributionHospitalData centerLaboratoryResearch & developmentItem to the tem tem tem tem tem tem tem tem tem te	TechnologyHealthcareFood & BeverageManufacturingPharmaceuticalFood processingDistributionHospitalDairyData centerLaboratoryRefrigerationResearch & developmentInitial initial

Additional Qualifications

- Large conditioned space (>30,000 sq. ft.)
- Space available for solar collectors (>25,000 sq. ft.)
- Land or continuous flat roof

Cogenra Solar Projects

Army Base El Paso, TX

- Single stage hot water chiller in a Container
- Solar Thermal Collectors provide hot water (the driving heat source)

The Only Practical Solar Storage Solution

Cost & Modularity of PV + Storage of CSP

WASTE HEAT TO POWER SOLUTION

What is an Organic Rankine Cycle?

What is an Organic Rankine Cycle?

Chiller derived Organic Rankine Cycle

Vapor Compression Cycle (VCC)

Heat Out

Completely Integrated in San Antonio, TX

Great Customer Benefits

Unique Series-Counterflow

ORC Applications

Availability of waste heat (195 – 285 F) <u>AND</u> heat sink

•High cost of electricity from the grid (> \$ 0.10/kWh)

•Year-round demand for electrical power

Electrical power output 500 KW – 3.5 MW

Applications:

- ORC as a bottoming cycle in CHP Gas Engines, Turbines
- In combination with conventional Steam Rankine Cycle
- Industrial Waste Heat Recovery
 - Cement, Steel, Chemical, Refineries, Metals, Minerals, Glass, Pulp & Paper, Food
- Compressor Stations TX, OK, LA, PA,...
- Geothermal CA, NV,...
- Biomass
- Incinerators
- Solar

Johnson Controls

75 Johnson Controls

ORC Efficiency Example

- Clean Compelling solution for electrical power generation
- Proven technology, high reliability

Building Efficiency

Helping people achieve great things

THANK YOU