Supported by a generous grant from The Alfred P. Sloan Foundation

The E2e Project: Evidence for Action on Energy Efficiency

Prepared for CIBO Meetings, September 2013 – Draft Version

KVS Vinay, E2e Program Director Nicholas Ryan, Prize Fellow, Harvard University

Goals of Our Visit

- Introduce the E2e Project to CIBO and learn about energy efficiency issues that matter to CIBO members
- Present sample of E2e research
- Set the stage for research collaboration between CIBO/ CIBO members and E2e

E2e aims to Measure the Economic Returns to Energy-Efficiency

- Who: A research organization co-founded by MIT and UC Berkeley, global leaders in energy research
- What: Run field studies with partners to generate and disseminate "gold standard evidence" on the economic returns to energy-efficiency
- Why: Lots at stake
 - Immense faith placed on energy efficiency as a resource. However, it is well accepted that there is an "energy efficiency gap"
 - Ultimately, E2e's mission is to understand *the causes* for difference between the technically feasible and practically achievable in energy efficiency and solve the energy efficiency gap

Key E2e Questions Include

- Are consumers and businesses bypassing profitable opportunities to reduce their energy consumption?
 - What are the most effective ways to encourage individuals and businesses to undertake energy efficiency investments
 - What is their actual rate of return to such investments?
- How does the organizational structure impact EE decisions in commercial and industrial sectors?
- Which are the most important economic sectors and applications to target energy efficiency policies?

Study Suggests EE is a Vast, Underutilized Resource due to Barriers to Adoption

If Savings Exist, Let's Find Them— Using Rigorous Methods

- E2e works with partners in a range of sectors to:
 - Find underlying economic causes for efficiency differences or obstacles to adoption of more-efficient technology
 - Measure returns to efficiency
 - Use state-of-the-art research methods, especially randomized controlled trials (RCTs) and quasi-experimental methods to generate such evidence

Sample of Ongoing Research Projects

- Home insulation in Michigan. Work with federal weatherization program to measure returns from residential retrofits using a randomized-controlled trial (RCT)
- **Fuel economy in US.** Work with auto major to determine effect of fuel economy information on vehicle purchase (RCT)
- Schools in California. Work with utilities in CA to understand drivers of energy efficiency in schools (RCT and quasiexperimental methods)
- Factories in India. Work with industrial associations of chemical and textile factories to measure returns to industrial investments in energy-efficiency (RCT)

Michael Greenstone

3M Professor of Environmental Economics, Department of Economics, Massachusetts Institute of Technology

Christopher R. Knittel

William Barton Rogers Professor of Energy Economics, Sloan School of Management and Co-Director CEEPR, Massachusetts Institute of Technology

Catherine D. Wolfram

Flood Foundation Professor, Haas School of Business and Co-Director, Energy Institute at Haas, University of California, Berkeley

The E2e Advisory Board

John Deutch Emeritus Institute Professor, Department of Chemistry, Massachusetts Institute of Technology

George P. Shultz Thomas W. and Susan B. Ford Distinguished Fellow, Hoover Institution, Stanford University

Cass Sunstein Robert Walmsley University Professor, Harvard Law School, Harvard University

Susan F. Tierney Managing Principal, Analysis Group

Daniel Yates Chief Executive Officer, Opower

Example : Plant Efficiency Experiment in India

- More and less efficient plants differ in a thousand ways
 - Generally can't say plant X uses less energy because it has technology Y or benefited from policy Z
 - Goal of research design is to make such *causal* statements on solid ground: find the real reasons

	Treatment: Energy Audit	Control
Baseline survey	Recruit 400+ interested plants, get basic fuel and electricity consumption data	
Treatment Energy audit	Give 200 random plants energy audits	
Treatment: Energy manager	Give ~100 random plants managers to follow-up	
Endline survey	See what plants invested in and what energy they saved	

Plants Show a Huge Variation in Energy Bills

Similar Variation Observed in Detail: Boiler Efficiency, Motor Loading, etc.

Boiler Efficiency of Textile Plants

Interventions Designed for the Most Likely Barriers

- Lack of information.
 - Energy audits give plants information on investments they could make and projected savings, for both thermal and electrical energy consumption
 - Economists argue informational problems or "market failures" a plausible reason for lack of efficiency
- Lack of skill.
 - Unskilled labor is cheap and abundant, but it is costly and difficult to run a boiler right or install a new system.
 - Energy managers stay on in plants for procurement, installation, training, etc.

Endline Survey and Analysis in Progress

- Survey covers economic and technical aspects of efficiency
 - Aggregate fuel and electricity consumption and bills
 - Investments, employment, inputs and outputs
 - Measures of efficiency of utility and process systems
- Early findings based on partial survey (230 plants) surprising
 - Treatment plants do invest somewhat more than control in equipment maintenance and upgrades
 - But treatment plants use *more* energy (in particular electricity) than control plants at the endline
 - Apparent response ("rebound") to efficiency is beneficial to plants but may confound policy-makers

What Would be the Shape of a CIBO – E2e Partnership?

- General template
 - Members benefit from economic analysis of returns to efficiency.
 - E2e analyzes data to produce publications that inform energy-efficiency research and policy debates.
- CIBO partnership motivated by simple observations
 - Heterogeneity in efficiency not unique to India. Past studies suggest scope for savings in industrial sector.
 - Anecdotally, CIBO members believe EE opportunities with positive payback are being by passed over

Next steps: Understand drivers of efficiency for CIBO members

- General examples that may be relevant:
 - Incentive structure. Plant managers and employees don't keep energy savings.
 - Investment characteristics.
 - **Risk.** Hard to agree on contract to guarantee savings.
 - **Covariance.** Energy use positively linked to profits: who cares to save when times are good?

Market characteristics.

- **Competitiveness.** Relationship of efficiency to energy cost share and market competitiveness.
- Utility- or Process-Interactions
 - Energy does not stand alone. Example of heat recovery in textile plants from corrosive dyeing liquor.

Next steps: Understand drivers of efficiency for CIBO members

- In-depth interactions between E2e and CIBO needed to pin down reasons for energy-(in)efficiency that can be tested
 - Visit with members and plants
 - Learn about the characteristics of membership
 - Analyze internal or external (EPA database) boiler data
- Goal for E2e to offer CIBO a concrete research plan by October board meeting
 - Rationale, sample of participants, proposed intervention and partners

Confidentiality is Absolute

- E2e researchers are experienced in handling confidential data and have often worked under non-disclosure agreements
 - Billing data from utilities
 - Bidding data from electricity auctions
 - Manufacturing micro-data from the census
- Detailed data a means to solid research results
 - Individual plant- or household-level data needed for statistical analysis
 - Publications do not contain any individually identifiable information

- Web Address
 - <u>http://e2e.haas.berkeley.edu/</u>
 - <u>http://e2e.mit.edu/</u>
- Staff Contacts (Program Directors)
 - Berkeley: Karen Notsund, <u>knotsund@berkeley.edu</u>
 - MIT: K.V.S. Vinay, <u>kvsvinay@mit.edu</u>