CO₂ EOR

Scott M. Frailey, Ph.D., P.E. Illinois State Geological Survey

Council of Industrial Boiler Owners Technical Focus Group Meetings

> December 2, 2014 Arlington, Virginia

Midwest Geological Sequestration Consortium www.sequestration.org

Outline

Basic Concepts Historical terminology CO₂ properties \square CO₂ EOR Mechanisms: CO₂ and crude-oil mixture Miscibility type Immiscible Miscible

Outline, contd.

Oil Recovery and Displacement Efficiency Microscopic (saturation) displacement Macroscopic (volumetric) displacement Areal Vertical Gravity Oil Recovery Estimates Summary

Historical Terminology: Chronologically-Based Terms

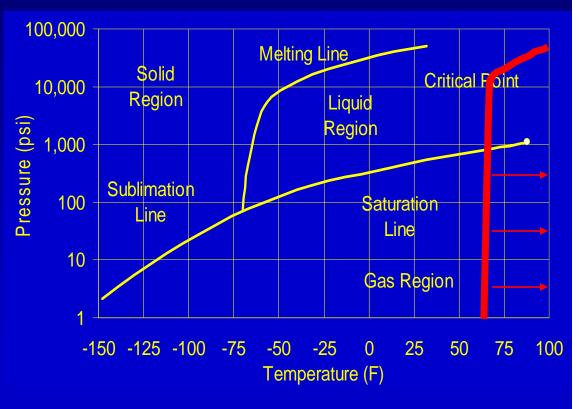
Primary: first stage of production
Secondary: second stage of production
Tertiary: third stage of production

Historical Terminology: Process-Based Terms

Primary: naturally occurring reservoir energy

Secondary: water or gas injection

- pressure maintenance
- immiscible displacement
 - 2-phase relative permeability
 - No fluid interaction, chemical reaction, or composition change
 - Relatively high interfacial tension

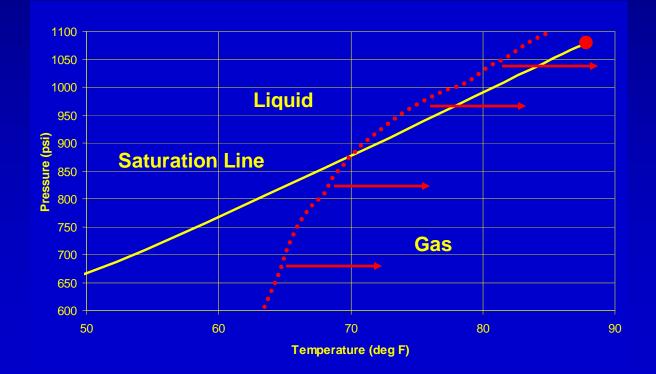

Historical Terminology: Process-Based Terms

EOR: injection of miscible gas, liquid chemicals, and thermal energy

 IOR: includes all EOR and other engineering applications, e.g. infill drilling, multilateral completions, reservoir characterization, and 4-d seismic.

CO₂ Phase Behavior: Pressure-Temperature Diagram

- Liquid, gas, solid regions
- Supercritical CO₂
 - critical fluid
 - dense phase
 - liquid-like CO₂
- Oil Reservoirs
 - Gas or liquid
 - Supercritical p&T



CO₂ Phase Behavior: Pressure Temperature Diagram

Critical Temperature: 87.7 °F

Fluid in the Reservoir? Gas-like or Liquid-like

Critical pressure: 1073 psia

- Miscibility type
 - Immiscible
 - Miscible
- Mechanisms: CO₂ and crude-oil mixture
 - Reduce oil viscosity
 - Swelling effect
 - Reduced surface tension
 - Pressure support
 - Reduce residual oil saturation

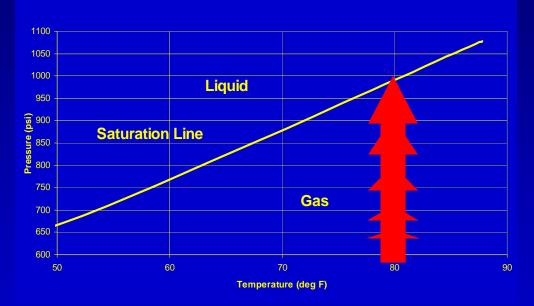
CO₂ EOR

CO₂ is a solvent to crude oil

- CO₂ is used in core labs as a low temperature solvent to clean core of crude oil in preparation for routine core analyses
- In the field, geology, geology, geology... characterization, characterization, characterization

CO₂ must contact the oil

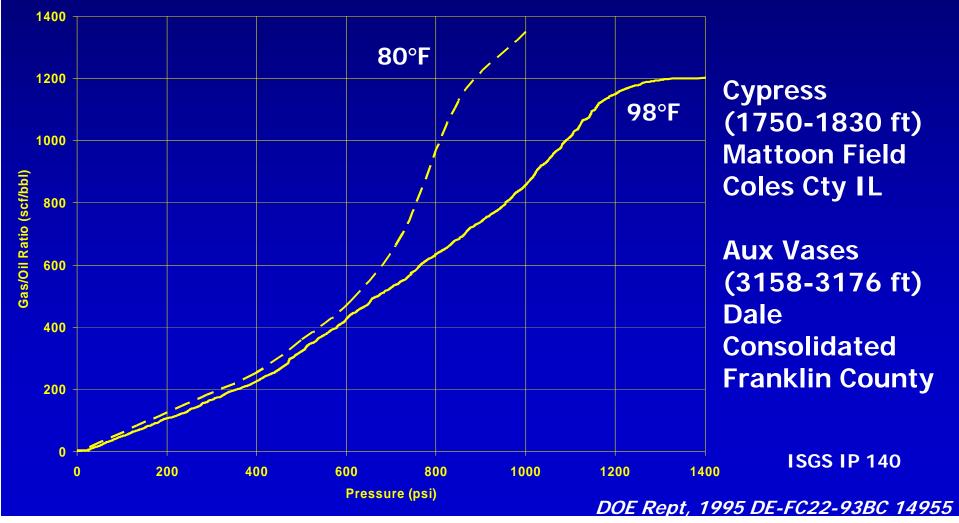
Miscibility Type


Defined for specific crude oil at a specific reservoir pressure and temperature Immiscible Two distinct fluids Reduced mixing, similar to solution gas Miscible One fluid (Eventual) complete mixing, in all proportions

First contact and multicontact miscibility

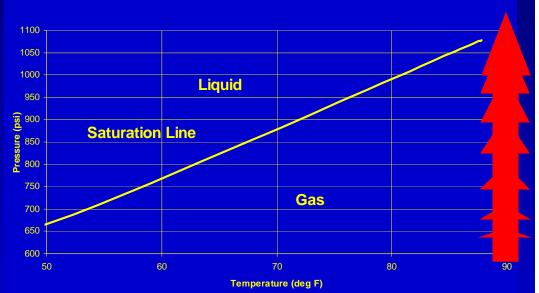
Immiscible

Gas or gas-like CO₂:


- Temperature < 88 °F</p>
- Pressure less than vapor pressure line of pure CO₂

Much less recent research for immiscible CO₂

CO₂ Solubility in Crude Oil


In situ CO₂ solubility w/oil higher for low temperature Illinois Basin Oil fields

Miscible

Liquid CO₂:

- Temperature < Tc:</p>
- Pressure > Vapor
 Pressure Pure CO₂
- Super critical CO₂:
 - Temperature >88 °F
 - Pressure > 1073 psia
 - AND, liquid-like density

Multicontact Miscibility

CO₂ Enriched with Intermediate hydrocarbons CO₂ Enriched with Intermediate hydrocarbons Oil Low viscosity CO₂ moves through the crude oil vaporizing intermediate hydrocarbons. Eventually hydrocarbon enriched CO₂ becomes miscible with the crude oil.

Advantageous Mechanisms

Miscible CO₂ liquid-like

- Reduce oil viscosity
- Swelling effect
- Reduced surface tension
- Pressure support
- Reduce residual oil saturation
- Immiscible CO₂ gas-like (less of all above)
 - Pressure support
 - Solution (CO₂) Gas Drive

Disadvantageous Mechanisms

CO₂ viscosity < Oil viscosity
 CO₂ viscous fingers
 CO₂ density < Oil density
 Gravity override
 Exacerbated by immiscible conditions

Oil Recovery and Displacement Efficiency

Microscopic (saturation) displacement

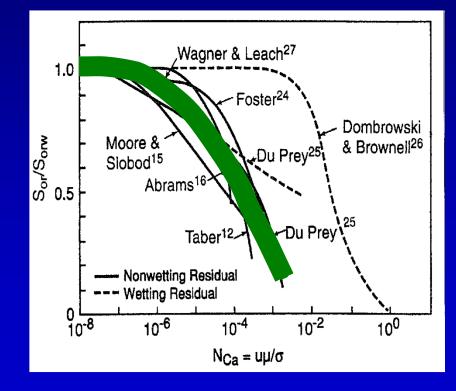
Macroscopic (volumetric) displacement

- Areal
- Vertical
- Gravity

Oil Recovery

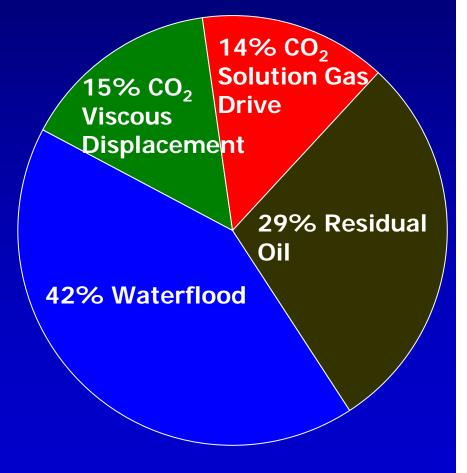
Product of microscopic (E_D) and macroscopic (E_V) displacement efficiency

$E = E_D E_V$


Microscopic Displacement

Capillary pressure
Surface tension
Initial saturations
Fluids present

Microscopic Displacement

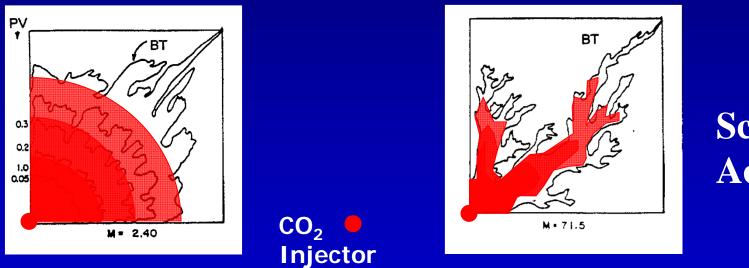

• X-axis Capillary Number, N_{ca} $N_{ca} = v \mu / \sigma \cos \theta$

Y-axis
 S_{or} / S_{orw}
 Residual oil to "fluid"
 Residual oil to water

Liquid CO₂ Core Flood: Loudon Field, Fayette County, IL

- Loudon crude oil/Cypress ss core
- Oil recovery via waterflood: 42%
- Oil recovery via liquid CO₂: 29%
 - 15% Viscous Displacement
 - 14% Solution Gas (CO₂)
- Total oil recovery: 71%

Trans, AIME 216,


Macroscopic Displacement

- Areal displacement efficiency (E_A)
- Vertical displacement efficiency (E_I)
- $E_V = E_A E_I$

E_V

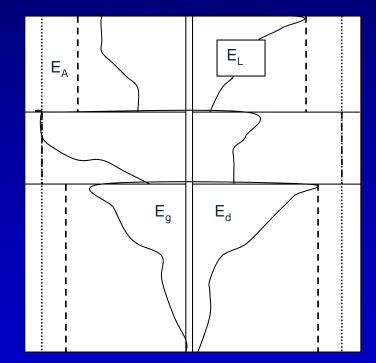
- Process dependent
- Geologic heterogeneity
- Injector/producer
 - Pattern
 - Spacing

Macroscopic Displacement: Areal


Scale: Acres

High Efficiency

Low Efficiency


(Plan View)

Macroscopic Displacement: Vertical

Macroscopic Displacement: Gravity

- Within each layer, gravity can affect displacement efficiency
- Three layer example with gravity override and irregular shaped fronts

Oil Recovery Estimates

- West Texas Rules-of-Thumb (Misible)
 - 10% of OOIP
 - 25% of cumulative primary and waterflood production

Example:

- Oil reservoir with 100 MMstb OOIP and 30 MMstb production
- OOIP r-o-t: 10 MMstb CO₂ EOR
- Production r-o-t: 7.5 MMstb CO₂ EOR

Oil Recovery Estimates: Illinois Basin Example

- Illinois Basin Screening Example
 - 14.1 Bstb OOIP and 4.3 Bstb production
 - OOIP r-o-t: 1.4 Bstb CO₂ EOR
 - Production r-o-t: 1.1 Bstb CO₂ EOR
- Comparison to rigorous geologic and reservoir model-based Basin assessment
 - 0.86-1.3 Bstb CO₂ EOR
 - Lower estimate due to about half of the Basin assessed at immiscible conditions

Summary

CO₂ is a solvent to crude oil
Proven EOR in W. Texas (predominantly)

10% OOIP; 25% production

Reservoir pressure important to miscible/ immiscible condition: related to dense CO₂
One of few options to generate revenue and store CO₂

CO₂ EOR

Scott M. Frailey, Ph.D., P.E. Illinois State Geological Survey

Council of Industrial Boiler Owners Technical Focus Group Meetings

> December 2, 2014 Arlington, Virginia

Midwest Geological Sequestration Consortium www.sequestration.org

