Reservoir Engineering Aspects of Geologic Storage of CO₂

Scott M. Frailey, Ph.D., P.E. Illinois State Geological Survey

Council of Industrial Boiler Owners Technical Focus Group Meetings

> December 2, 2014 Arlington, Virginia

Midwest Geological Sequestration Consortium www.sequestration.org

What is Geologic Storage?

 Injection of any fluid into a porous and permeable formation for short or long term storage

- Types
 - Industrial waste (generally water based)
 - Natural gas
 - CO₂

CO₂ Storage Mechanisms

Free phase CO₂
mobile
immobile (capillary trapping)
Dissolution (solubility in brine)
Mineral precipitation
Enhancement by geologic structures

Storage Mechanisms: Pores' Throats and Bodies

Storage Mechanisms: Geologic Structure

- CO₂ less dense than saline water in saline formation
- CO₂ "pool" forms at the top of subsurface geologic structure, that dissolves in water with time.

Storage Mechanisms: No Geologic Structure

- No CO₂ "pool" forms at the top of subsurface geologic structure
- CO₂ continues to migrate until a geologic trap is reached, CO₂ is capillarily trapped or dissolves in water.

Site Screening and Site Selection

Site Screening

 High level cursory assessment of multiple sites leading to hierarchy of better sites or areas

Site Selection

- Specific and detailed study of single sites leading to a choice of a specific site
- Similar attributes are studied, but without differing degrees of certainty in the data

Regulatory Issues

Consideration

- Protection of underground sources of drinking water (USDW)
- CO₂ migration vertically and horizontally

Design

- Wellbore integrity
- Breach geologic containment
 - Fracture propagation pressure
 - Capillary entry pressure
- Geologic heterogeneity

Operational Issues

Consideration

- Available CO2 storage volume
- Daily injection rate and pressure
- CO₂ migration vertically and horizontally
- Pore space ownership

Design

- Thickness, area, porosity
- Injection zone
 - Thickness and permeability
 - Depth and pore pressure
 - Fracture pressure
- Caprock
 - Capillary entry pressure
 - Fracture propagation pressure
- Geologic heterogeneity

The Ideal CO₂ Storage Site

Injection zone: High horizontal permeability and porosity High fracture propagation pressure Low vertical permeability Caprock (vertical seal): Thick, non-reactive composition High capillary entry pressure and fracture propagation pressure Both areally extensive

Design Criteria

Reservoir Characterization
Reservoir Pressure and Temperature
Injection Rates and Injection Pressure
Perforated Interval

Reservoir Characterization

Porosity: effective and total
Thickness: net and gross
Permeability:

absolute and relative
Horizontal and vertical

Porosity and Permeability

- Importance of Petrography
- Thin Section indicated micro-fractures
 - Investigating: in situ vs. post coring development of microfractures

Depth, ft MD	6763	7045
φ, %	28.5	28.6
k, md	43.2	1440

Gross and Net Thickness

Porosity Cutoffs

Neutron-Density Porosity

Net and Gross Thickness

	Porosity Cutoff, %					
Depth	8	10	12	14		
5545-7050	1322	1009	744	569		
h _{net} /h _{tot}	0.878	0.670	0.494	0.378		
5545-5900	310	229	105	34		
5900-6150	145	51	23	9		
6150-6430	249	120	33	10		
6430-6650	220	211	188	152		
6650-6820	170	170	168	166		
6820-7050	230	230	228	200		

Horizontal and Vertical Permeability

Horizontal Averaging

- Arithmetic average: general, linear, parallel flow
- Geometric average: injection well-radial flow
- Vertical Averaging
 - Harmonic average-general, series flow

Predicting Permeability from Porosity

Core Analyses: permeability-porosity
 Log Analyses-Correlations w/ Porosity Logs
 Nuclear Magnetic Resonance
 Neutron-Density
 Sonic

Absolute Permeability-Core Data

- Depth Shift: core to log
- Transform core porosity to core permeability
- Conventional semilog plot not good predictor of perm

Absolute Permeability- φ-k Transform Based on Grain Size

 Sub-divide data by grain size
 Better representation of the core data
 How to pick transform based on log response?

Geologic Model: Absolute Permeability

15 ft model

Vertical Permeability and Scale

Core*	k _h	K _{varth}	K _{vhar}	K _v /k _h	K _v /k _h
		1.5"	30'	1.5"	30'
6404					
-	0.33	0.031	0.011	1.0	0.033
6433					
6751					
-	2.3	0.94	0.30	0.55	0.013
6779					
All	1.2	0.43	0.019	0.76	0.016

*Does not include 10 ft of whole used for whole core analyses

Injection Rates and Pressure

Fracture Pressure
Seal
Reservoir
Capillary Entry Pressure
Seal

Fracture Pressure-Reservoir

- Mechanical tests of core sample
- Mini-frac tests-wireline
 - Small volume pump test, maximum rate restricted.
 - Too high perm, too low pressure increase, not fracture
- Injection step rate test
 - After completion (casing and perforation)

Fracture Pressure-Reservoir: Step Rate Test

- Water injection at various stabilized and increasing rates
- Pre-fracture pressure buildup greater than post-fracture buildup
- Depth correction
 - Brine density
 - Gauge and perf locations

 Fracture does not propagate or grow to the size of stimulation-type fracture.

Fracture Pressure-Seal

- Mechanical tests of core sample
 Mini-frac tests-wireline
 - Likely successful, on lower perm seals, but must find something that is non-shale
 - Non-shale likely less representative of the entire seal
 - Tool's probe contact small, thin beds

Capillary Entry Pressure-Seal

Laboratory tests

- Mercury injection, high pressure
- Porous plate, low pressure with reservoir fluids
- Seal/reservoir interface
 - Compare capillary entry pressure to pore pressure *increase* due to injection immediately below seal

Capillary Entry Pressure-Seal

 Entry pressure: minimum pressure required to reduce wetting phase saturation below 100%
 Convert from Hg pressure to brine-CO₂

Injection Zone Pressure and Temperature

Density of CO₂ Storage capacity Hydrostatic pressure of CO₂ in injection tubing Injection Pressure surface injection pressure Pipeline delivery pressure Compressor design Wellhead and wellbore tubular design

Perforated Interval

Storage efficiency
Caprock interaction
Near-wellbore flow restrictions

Operating Criteria: CO₂ Plume (4D) Distribution, contd.

Perforation Strategy:

Perforate bottom to top in annual increments

Cell size: 220 x 220 x 15 ft

Conclusions

Many design elements are geologic based

- Caprock integrity necessary for vertical containment
- Wellbore integrity necessary for out-of-zone releases

Conclusions, contd.

CO₂-brine relative permeability challenges
 Seal/Caprock characterization importance
 Distribution of free-phase CO₂ and incremental pressure increase

Reservoir Engineering Aspects of Geologic Storage of CO₂

Scott M. Frailey, Ph.D., P.E. Illinois State Geological Survey

Council of Industrial Boiler Owners Technical Focus Group Meetings

> December 2, 2014 Arlington, Virginia

Midwest Geological Sequestration Consortium www.sequestration.org

