

Zero Liquid Discharge Solutions

for Power and Industrial Facilities

Phil Rader

CIBO Energy Session Washington, DC

December 2, 2014

Introduction

- Regulatory Drivers
- Technology Options
- Direct Evaporation ZLD
- Case Studies
- Summary

CIBO Presentation - 12/02/14 - P 2

Alstom ECS/CCS

Phil Rader, Business Sales Manager (865) 694-5233 phil.rader@power.alstom.com

Alstom Environmental Control Systems North American HQ – Knoxville, TN

CIBO Presentation - 12/02/14 - P 3

© ALSTOM 2014. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

ALSTOM

- Introduction
- Regulatory Drivers
- Technology Options
- Direct Evaporation ZLD
- NID Technology
- Summary

CIBO Presentation - 12/02/14 - P 4

Regulatory Drivers

Background

- Congress passed CWA in 1972 to "restore and maintain the chemical, physical, biological integrity of the Nation's waters."
- CWA authorizes EPA to establish Effluent Liquid Guidelines (ELG) for sources
- EPA identified steam electric power plants as a category in 1974 at placed limits on thermal and pollutant discharges

• Rules last updated in 1982

CIBO Presentation - 12/02/14 - P 5

Effluent Limitation Guidelines for Power Plants

- EPA proposes to revise guidelines that may impact 7 waste streams:
 - -FGD waste water
 - -Fly ash transport water
 - -Bottom ash transport water
 - -Combustion residual leachate
 - -Nonchemical metal cleaning waste
 - -Waste water from mercury cleaning systems
 - -Gasification waste water
- Final ruling was to be ready by May 2014; delayed, now expected in September 2015
- Compliance 3 years after effective date of final ruling; additional time granted for ZLD solutions

Effluent Limitation Guidelines for Power Plants

• EPA proposed rules in April 2013

Constituent	30 day average	Max 1 day limit
Nitrate/Nitrite	0.13 mg/l	0.17 mg/l
Mercury	119 ng/l	242 ng/l
Selenium	10 µg/l	16 µg/l
Arsenic	6 µg/l	8 µg/l

- Flow limits for high flow plants (>1000 gpm)
- Meet discharge levels prior to comingling with other streams (prevents "dilution solution")
- Allows delay in implementation for plants that commit to ZLD solutions

- Introduction
- Regulatory Drivers
- Technology Options
- Direct Evaporation ZLD
- NID Technology
- Summary

CIBO Presentation - 12/02/14 - P 8

WFGD Waste Water Treatment Methods

- Dilution
- Surface impoundments
 - Gravity separation of suspended solids
 - Commingle with other waste water streams
 - Clarified water discharged; settled solids landfilled
- Chemical precipitation
 - Precipitate heavy metals
 - Coagulation/flocculation followed by thickening/filtration
 - Treated water discharged; precipitated solids landfilled
- Biological treatment
 - Used to treat Se, other metals, and DBA
 - Treated water discharged
- Vapor-compression evaporation

Waste Water is Discharged into Surface Water

CIBO Presentation - 12/02/14 - P 9

Methods to Eliminate WFGD Waste Water Discharge

- Closed-loop operation
 - -Potential corrosion, performance, and operational issues
- Evaporation ponds
 - -Limited to southwestern US
- Ash conditioning/fixation
 - -Capacity depends on sulfur/ash in coal
 - -Lime addition for stabilization
- Underground injection
- Direct evaporation

Zero Liquid Discharge

ALS

Direct Evaporation Advantages

- True ZLD no purge stream to permit, monitor, and report
- Wide applicability as retrofit solution
- Cost-effective
- Simplicity
 - Fewer unit operations than most conventional WWT
 - -No secondary solid waste stream
- Proven technology
 - -Spray dryers in service in power plants since mid-1970s
 - Duke Cliffside 6 evaporating WFGD waste water since December 2012

- Introduction
- Regulatory Drivers
- Technology Options
- Direct Evaporation ZLD
- NID Technology
- Summary

CIBO Presentation - 12/02/14 - P 12

Direct Evaporation Circa 1981

ALSTOM

CIBO Presentation - 12/02/14 - P 13

Slipstream SDE

Slipstream DFGD for WFGD Purge Evaporation

- 5 to 10% APH bypass for most applications
- Hot gas reduces equipment cost
- Lime addition to purge stream
 - -Corrosion mitigation
 - -Co-benefits for SO₃ and HCl control expected
 - -Improves bag life
 - -Reduced scaling potential
 - -Low lime consumption
 - -Optimization potential
- Dissolved and suspended solids dried and collected by existing particulate control system

True Zero Liquid Discharge

Waste Water Evaporation Potential

Slipstream SDA offers significant evaporation capacity

CIBO Presentation - 12/02/14 - P 16

© ALSTOM 2014. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is stircity prohibited.

Alstom Spray Dryer Absorber Technology

Rotary Atomizer

Dual Fluid Nozzles

CIBO Presentation - 12/02/14 - P 17

Rotary vs. Dual Fluid Nozzle Atomization

Rotary Atomizer

- Single rotary atomizer
- Larger diameter, shorter vessel
- Lower power consumption
- Higher pressure drop
- Good turndown

Dual Fluid Nozzles

- 4-8 dual fluid nozzle lances
- Smaller diameter, taller vessel
- Higher power consumption

ALS

- Lower pressure drop
- Good turndown

Two proven technology options

SDE Alternatives

Rotary Atomizer

Dual-Fluid Nozzles

CIBO Presentation - 12/02/14 - P 19

Duke Energy Cliffside 6 AQCS

Project Scope Spray dryer, fabric filter, spray tower, lime/limestone preparation and feed systems, by-product dewatering system, ductwork, fans, erection and commissioning advisors

Location Cliffside, NC

Capacity 825 MW

Start-Up May 2012

Fuel Eastern Bituminous

SO2 Removal 99% with 3.2 lb/mmBtu fuel/with DBA

99% with 2.8 lb/mmBtu fuel/no acid

- **No. Absorbers** Two spray dryers; one spray tower
- **By-product** Commercial gypsum
- **Gas Flow** 2,800,000 ACFM

Reagent Lime, limestone

Duke Energy Cliffside Unit 6 Cliffside, NC

Over 100,000,000 Gallons of Waste Water Evaporated to Date

CIBO Presentation - 12/02/14 - P 20

© ALSTOM 2014. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

- Introduction
- Regulatory Drivers
- Technology Options
- Direct Evaporation ZLD
- NID Technology
- Summary

CIBO Presentation - 12/02/14 - P 21

NID Overview

- Multi-pollutant control: High efficiency removal of SO₂, SO₃, PM, HCI, HF, and Hg
 - SO₂ removal: $\leq 98\%$
 - $-SO_3^{-}$ emissions: < 1 ppm
 - PM (filterable): < 0.010 lb/MBtu
 - HCI: <0.002 lb/Mbtu
 - Hg: <1.2 lb/TBtu
- Lime-based dry FGD technology
 - Integrated hydrator/mixer no slurry handling
 - Zero liquid discharge
 - Low water consumption; ability to use low quality water: CTB, WFGD purge
- Simple, compact design
 - Small footprint offers retrofit advantage
 - Low capital cost
 - Low BOP/construction cost
 - Low O&M cost
- Modular design
 - High reliability
 - Excellent turndown without gas recirculation
 - No scale up issues
- Fuel flexibility up to 2.5% sulphur coal or higher

CIBO Presentation - 12/02/14 - P 22

World-Wide NID Installations

ALSTOM

CIBO Presentation - 12/02/14 - P 23

FGD Technology Comparison

ALSTOM

CIBO Presentation - 12/02/14 - P 24

NID Flow Schematic

CIBO Presentation - 12/02/14 - P 25

NID-C Concept

- Multiple, independently isolatable modules
- Dampers
 - Upstream of reactor
 - Downstream of FF compartment
- Nominal gas flow of 50,000-300,000 acfm per module
- Can be designed to achieve emissions guarantees at full load with one module out of service

Allows for Turn-Down up to 50% without Recirculation

ALSTO M

NID Arrangement

CIBO Presentation - 12/02/14 - P 27

Mixer/Hydrator

CIBO Presentation - 12/02/14 - P 28

Mixer/Hydrator

CIBO Presentation - 12/02/14 - P 29

Constructability Advantages

- Shop fabrication drastically cheaper than field fabrication
- NID allows high degree of shop fabrication even with truck shipment
 - J-duct reactors
 - Inlet ducts
 - Day silos
 - Mixers
 - Hydrators
- Barge access allows further pre-assembly
 - Fabric filter compartments
 - Inlet/outlet plenums

Modularization Lowers Construction Costs

CIBO Presentation - 12/02/14 - P 30

FGD Technology Comparison		Advantage Neutral	
Technology Comparison	NID	WFGD	
Capital cost		•	
Reagent cost			
Power cost (exc. fans)		•	
Pressure drop			
Byproduct disposal cost		?	
Water consumption			
Footprint	?	?	
Installed base			
Fuel flexibility	\bigcirc	\bigcirc	
SO ₂ removal	\bigcirc	\bigcirc	
SO ₃ removal			
Hg removal			

CIBO Presentation - 12/02/14 - P 31

- Introduction
- Regulatory Drivers
- Technology Options
- Direct Evaporation ZLD
- NID Technology
- Summary

CIBO Presentation - 12/02/14 - P 32

Summary

- Increasingly stringent ELGs will likely impact operational practices at power and industrial facilities
- Advantages of direct evaporation include:
 - -Zero liquid discharge
 - -Simplicity
 - Cost effective
 - -Proven technology
- Alstom NID technology offers comprehensive air emissions solution

ALSTOM

CIBO Presentation - 12/02/14 - P 33

