

Optimization of Steam and Electric Generation Assets

Discussion Items

- AAI-JMP Profile
- Power House Operating Challenges
- An Approach To Net Zero Electric Purchase

AAI-JMP Profile

- Independent Full Service Turnkey Control Solutions Provider
- 9 North America Branches
- 120+ employees / \$25Meg Annual Revenue
- Focused Solutions for Consumer Products, Energy, Food & Beverage, Petrochemical, Pharmaceutical, and Pulp & Paper
- Energy/Utility Solutions include:
 - Boiler Combustions Controls, BMS and Balance of Plant
 - Energy Management and Monitoring Solutions
 - Water and Waste Treatment

Philadelphia Branch Profile

- Independent Full Service Turnkey Solutions Provider in Process Control, Manufacturing & Information Systems
- Process Control Solutions for the Consumer Products, Energy, Food & Beverage, Petrochemical, Pharmaceutical, and Pulp & Paper Markets
- Boiler Combustion Controls and Industrial Energy Management is Core Application Expertise
- Successfully Completed over 200+ Powerhouse Projects
- Industrial Energy Solutions Team Comprised of Individuals with Hands-On Background in Boiler Control Design, Start-Up and Operation

AAI-JMP Solutions

- Energy Management Solution
 - Boiler Load Allocation
 - Turbine Load allocation
 - Coordinated Header Pressure/Predictive Header Pressure Control
 - TieLine Control
 - Economic Load Shed

• Multi-Fuel Boiler Optimization

- Independent Fuel Masters, e.g. BioMass, NG, Coal
- Flexibility to Tune Each Master for Specific Fuel
- Inferred Btu Control by Consumed Air
- Coordinated Load Changes
 - Auto Air Distribution Control
 - Excess Air Control

Utilities Operating Challenge

- Meet the Plant Steam & Electrical Demands
 - While Operating Smoothly, Reliably, Consistently, Safely
 - Meeting Environmental Constraints
 - Meeting Fuel and Electric Purchase Contracts
 - @ Lowest Possible Cost

Automation Applications Inc, LLC

Powerhouse Overview

Operating Priorities

- Meet steam demand among fuels/boilers based on minimum costs while adhering to fuel, boiler, operational & environmental constraints
- Maximize steam supplied on a prioritized fuel(s) basis, e.g. Biomass, NG or coal
- Distribute steam economically among turbines and PRVs to maximize total power generated while minimizing the use of PRVs
- Manage purchased fuels and electric costs

Creating An Island

- Steam and Electric Generation Assets in Place
- Operating Objectives to a Net Zero Electric Purchase
- Operators Trained to Meet The Defined Objectives
- But Questions and Risks Remain....

How can you meet these objectives within the demands of a changing 7x24 operational environment?

Energy Management Solution

- Multi-Fuel Boiler Optimization
- Boiler Load Allocation
- Turbine Load allocation
- Coordinated Header Pressure
 w/ Predictive Header Pressure Control
- TieLine Control
- Economic Load Shed

Real-time EMS

- Rule-based supervisory control system utilizing multivariable, prioritized constraint control strategies
- Process equipment, operational constraints, environmental constraints and costs define the operating envelope
- The applications finds the most optimized point within the defined envelope

<u>The Objective:</u> Run the powerhouse as well or better than your best operators on their best day to the defined operational goals.

Multi-Fuel Boiler Optimization

- Independent Fuel Masters, e.g. BioMass, NG, Coal
- Flexibility to Tune Each Master for Specific Fuel
- Inferred Btu Control by Consumed Air
- Coordinated Load Changes
 - Auto Air Distribution Control
 - Excess Air Control

Advanced Boiler Load Allocation

- Generate Steam at the possible the lowest possible impact to emissions and operating costs
- Allocates the total steam demand among multiple fuels/boilers based on defined fuels, emissions and cost constraints
- Incremental emissions and costs for the next unit of steam
- Fuels & Boilers with lower incremental emissions and steam costs are favored more than boilers & fuels that produce higher resulting emissions and costs
 - Lowest impact boilers & fuels take most of the load

Advanced Boiler Load Allocation

Advanced Boiler Load Allocation

- Boiler Fuel Optimizer
 - Maximizes lower cost fuels and minimizes more expensive fuels
 - Works with constraints to minimize the emissions and cost of steam/electrical power
- Constraint Controllers
 - Create an operating/environmental (process envelope)
 - Constraints prioritized on order of importance
 - Global constraints have precedence
 - Operating & Emissions Constraints have priority over cost decisions

Automation Applications Inc, LLC

Boiler Constraints

Rule Based Constraints

- Furnace Draft
- Drum Level
- O2, CO, NOx, Opacity
- Fuel Flow Limits
- Steaming Limits
- Boiler Master Limits
- Others as required

Global

Constraints

Automation Applications Inc, LLC

Advanced Turbine Load Allocation

- Allocates steam among turbines and PRVs while adhering to constraints to minimize:
 - The cost of producing electricity
 - Steam venting
- Benefits
 - Minimum cost of self generated electricity
 - Cost savings from reduced steam venting & condensing

Advanced Header Pressure Control

- Maintains stable header pressures for all combinations of boilers, fuels and equipment conditions
- Minimizes header pressure disturbances
- Handles several pressure upsets on different headers concurrently in a **coordinated** fashion with minimum upset to the overall steam system
- Provides multiple control strategies depending on the severity of the upset

- Objective: Manage Purchased Power
- Control Strategies
 - Real Time Pricing Tie Line Control for Buying or Selling Power
 - Purchase Megawatt Control
 - Interval Demand Megawatt Hour Purchase Control
 - Load Shedding

- Real Time Pricing for Buying Power
 - Downloads utility purchase price
 - Continuously calculates cost of producing power
 - Compares with cost of buying power from utility
 - Adjusts turbine condensing loads to control purchased power while adhering to prioritized constraints

Automation Applications Inc, LLC

Cost Decision Display

- Real Time Pricing for Buying or Selling Power
 - Downloads power company's purchase and sell prices
- Economic Sell Advisor
 - Compares current purchase and sell prices against incremental generation costs to determine optimal equipment loading
 - Advises how much electricity should be bought or sold and the optimum turbine extraction, condensing and venting mix to produce additional generation needed
 - Can make closed loop decisions for control

- Purchase Megawatt Control
 - Instantaneous purchase MW target is maintained
 - Power Company interval demand may be exceeded
 - Used to conserve fuel
- Interval Demand Megawatt Hour Purchase Control
 - Optimizes buying electricity to **exactly** reach the MW target at the end of the interval
 - Prevents extra expense of exceeding interval demands

- Load Shedding
 - Prevents import power penalties during:
 - A boiler Trip
 - A turbine generator failure
 - Trips a list of breakers and motors divided into groups
 - Groups are prioritized according to effect on production

Implementation

- Based on Proven Technology
- Rule-Based supervisory control system utilizing multivariable, priority constraint control strategies
- Process equipment & operational constraints, as well as environmental constraints, define a safe operating envelope
- Powerhouse usually operates on the boundary of constraints
- Customer Quote: "EMS runs our powerhouse as well or better than our best operator on his best day"

Integration with Existing Controls

- Client/Server Based or Imbedded Application
- Works in Concert w/Major Control System Platforms
 DCS, Hybrid, PLC, Turbine Controllers
- Utilizes Industry Data Interface Standards
 - OPC, DDE, Modbus
- Database Open to Third Parties
- Standard Operating & Engineering Displays
- Tailored to Specific Steam Generation Functions

Application of the Controls

- Quick & Easy to Implement
 - Function Blocks Configured to Form Tailored Solution
 - No Programming Required
 - No Models to be Developed & Maintained
- Easy to Maintain, Modify, Expand

Automation Applications Inc, LLC

EMS Intuitive Look & Feel

Easy for Operating Personnel to Understand & Use

Operational Benefits

- Improved Demand Side Operations
- Greater Operating Stability & Reliability
- Reduced Steam Venting & Condensing
- Prioritized Fuel Use
- Identification of Bottlenecks for Improved Efficiency
- Maximum Asset Utilization
- Minimized Emissions and Operating Costs
- Potential for Creation of Virtual Island

Some Typical Installations

<u>Alberta</u> - Multi-fuel Boiler Control, Coordinated Header Pressure Control, Demand & RTP Tie Line, Load Shedding, Power Factor Control

<u>Texas</u> - Multi-fuel Boiler Control, Boiler Load Allocation , Coordinated Header Pressure Control, Demand Tie Line and Power Factor control

Alabama - Demand & RTP Tie Line

<u>Alberta</u> - Multi-fuel Boiler Control, Coordinated Header Pressure Control, Demand and RTP Tie Line Control, Load Shedding, Boiler Load Allocation

<u>British Columbia</u> - Multi-fuel Boiler Control, Boiler Load Allocation Coordinated Header Pressure Control

<u>Georgia</u> - Multi-fuel Control, Boiler Load Allocation, Coordinated Header Pressure Control

<u>Mississippi</u> - Multi-fuel Control, Coordinated Header Pressure Control, Boiler Load Allocation

Creation of a Virtual Island Through Optimization of Steam & Electric Generation Assets

