T. B. Simon Power Plant Combined Heat and Power

Heat Rate and Future Emissions

Nate Verhanovitz, Performance Engineer Power and Water, Infrastructure Planning and Facilities Michigan State University

Council of Industrial Boiler Owners Technical Focus Group, Energy & Environmental Committee Meetings March 4th – 5th, 2014 Arlington, VA

The mission:

The mission of the T. B. Simon Power Plant is to provide a reliable, cost efficient energy source to MSU while exceeding expectations for environmental quality. The pursuit for excellence in service and optimal efficiency are the foundation for the plant's initiatives.

The University is taking bold steps to conserve energy on the demand side. The Simon plant is doing the same on the supply side. Along this path we must optimize the plant while considering the following:

- Seasonal temperature variation
- Office and academic electric load
- Campus events
- Fuel type and quality (biofuel / NG / coal)
- On campus residential occupancy
- Summer cooling load
- Grid tie-line purchases
- Campus infrastructure choices (existing and planned)
- Reliability (Remember August 2003?)

What is CHP?

- <u>Combined</u> <u>H</u>eat and <u>Power</u>
- Wikipedia.org defines CHP as the use of a power station to simultaneously generate electricity and useful heat.
- By combining what are typically separate processes of generating electricity and heat, efficiency can be higher.

Simon plant CHP Process

http://ipf.msu.edu/green/energy/generating-power.html

Why might CHP be a good choice?

- Efficient: overall can be a better use of fuel if you have something useful to do with the heat (steam in most cases).
- Emissions: more efficient means smaller environmental impact for the same benefit.
- Life safety: having the energy conversion process (combustion) in a central location reduces the need for individual heat sources in buildings or processes.

Life Safety?

 Burning MAC Shops and Engineering Building, March 5, 1916. (Shops were also called "the Mechanical Laboratory.")

 Photo from the 1955 MAC yearbook, The Wolverine, page 69.

 Courtery of Michigan State University Archiver and Historical Collections

http://www.egr.msu.edu/about/history-college

Efficiency and heat rate

 Efficiency is defined by output energy divided by input energy. This gives you a unit-less value such as percent. It is best applied to CHP and processes that use the generated thermal energy.

0.60 or 60%

 Heat rate is another way to define efficiency, it relates how much input energy (fuel) is required to get a unit of output energy. That means a lower number is better. It has units. If it was a car, think of it as gallons per mile.

5687 BTU/ KWH

Early morning story problem quiz...

(Remember there is 1 CE credit available if you attend both days and complete your CIBO survey)

- In all of January 2014, MSU's Simon CHP plant produced 336.2 million pounds of 90 lb. pressure steam at 385F for campus heating and 22,550 MWH of electricity.
- To do this, the plant consumed 8,644 tons of coal, 464,184 MCF of natural gas, and 470 tons of biofuel.
- On your napkin, using the concepts presented, please calculate the percent efficiency.
- Eyes on your own napkin, please.

Output first:

- 336,200,000 lbs of steam x 1095.73 BTU/lb. = 368,433 million BTU
- 22,550 MWH x 3,412,142 BTU / MWH for electricity = 76,951 million BTU
- Now for Input

Input:

- 8,644 tons x 2,000 lbs/ton x 12,000 BTU/lb. for coal = 207,456 million BTU
- 464,184 MCF x 1,012,000 BTU / MCF for natural gas = 469,754 million BTU
- 470 tons x 2,000 lbs/ton x 5,000 BTU/lb. for biofuel = 4,700 million BTU

Remember it's output over input

Dropping the millions

$$\eta_{th} = \frac{(BTUs_{team} + BTUe_{lectric})}{(BTU_{coal} + BTUg_{as} + BTUb_{io})}$$

$$\eta_{th} = \frac{(368,433+76,951)}{(207,456+469,754+4,700)}$$

$$\eta_{th}$$
 = 0.653, or 65.3%

So that means MSU gets 65 cents worth of value for each dollar spent on fuel

Heat Rate

 Heat rate typically applies to electrical only utility generation, it's units of BTU/KWH are useful. It can be applied to thermal processes since KWH represents a unit of energy.

Now in BTU / KWH

- Perfect efficiency is 3,412 BTU / KWH, this is the thermal value of a KWH of electricity.
- To get the total thermal heat rate of the Simon Plant for January we take

$$HR_{thermal} = \frac{3,412 BTU/KWH}{\eta_{th}} = \frac{3,412}{0.653} = 5,225 \text{ BTU/KWH}$$

 So that means MSU puts 5,225 BTU into each kilowatt for an hour of useful output.

2012 EIA US Average Heat Rates Electrical Only, BTU/KWH (%)

	Coal	Natural Gas	Petroleum
Steam Generator	10,107 <mark>33.8%</mark>	10,385 <mark>32.9%</mark>	10,359 <mark>32.9%</mark>
Gas Turbine		11,499 29.7%	13,622 25.0%
Internal Combustion		9,991 34.2%	10,416 <mark>32.8%</mark>
Combined Cycle		7,615 44.8%	10,195 <mark>33.5%</mark>

 $HR_{thermal} = \frac{3,412 \text{ BTU/KWH}}{\eta_{th}} = \frac{3,412}{0.653} = 5,225 \text{ BTU/KWH}$

But there is a problem with this reasoning, you must know your process very well before declaring success and reductions.

T.B. Simon CHP plant

Historical Steam Energy Percentage at MSU

We are out of balance and it's getting worse

Time to rethink and get efficiency up and emissions down

Simon Plant CHP Balance

Improving Heat Rate

A plant in perfect steam / electric balance would produce only as much electricity to satisfy campus steam demand

The remainder would have to come from grid purchase or more efficient electrical production

CHP Balance

- Backpressure steam turbine generators do not have condensing. They must be run in CHP balance.
- A glimpse at a plant in balance is to expand this idea over the entire steam demand.
- This case shows generation of 1MW of electricity for each 19,450 lbs of steam sent to campus. It can be done at a heat rate of 4,550 BTU / KWH (75%)

Steam Turbine Calculator

Calculates the energy generated or steam outlet conditions for a steam turbine.

Solve	for:	
Isentropic Ef	fficiency 🔽	
Inlet S	team	-
Pressure*	900	psig
Temperature 💌 *	835	°F
Turbine Pr	operties	
Selected Turbine Property	elected Turbine Mass Flow -	
Mass Flow *	19.45	klb/hr
Generator Efficiency *	90	96
Outlet S	Steam	
Pressure*	90	psig
Temperature *	385	۴
* Required	Enter	[reset]

Inlet Steam		Mass Flow	19.5 klb/hr	
Pressure	900.0 psig	Sp. Enthalpy	1,413.9 btu/bm	
Temperature	835.0 °F	Sp. Entropy	1.596 btu/lbm/F	
Phase Gas		Energy Flow	27.5 MMBtu/hr	
_				
_		sentropic Efficiency	85.3 %	
		Energy Out	3.8 MMBtu/hr	
		Generator Efficiency	90.0 %	
		Power Out	1.000.2 KW	
			stance lies	
	t <mark>a</mark> .			
Outlet Stea	um .	Mass Flow	19.5 klb/hr	
Outlet Stea	90.0 psig	Mass Flow Sp. Enthalpy	19.5 klb/hr 1,219.0 btu/lbm	
Outlet Stea Pressure Temperature	90.0 psig 385.0 °F	Mass Flow Sp. Enthalpy Sp. Entropy	19.5 klb/hr 1,219.0 btu/lbm 1.637 btu/lbm/R	

http://www4.eere.energy.gov/manufacturing/tech_deployment/amo_steam_tool/equipTurbine

CHP generation at peak annual campus electrical demand

CHP generation and electrical demand

The gap?

- The gap is caused by a demand for more electrical power than the existing CHP process can most efficiently support.
- The gap is filled presently with conventional power generation by Rankine cycle with condensing which has a heat rate of 10,385 BTU/KWH

Closing the gap

 It could be filled with more efficient combined cycle operation at 7,165 BTU/KWH

	Coal	Natural Gas	Petroleum	Nuclear
Steam Generator	10,107	10,385	10,359	10,479
Gas Turbine		11,499	13,622	
Internal Combustion		9,991	10,416	
Combined Cycle		7,615	10,195	

What is combined cycle CHP?

Combined cycle is the coupling of the Brayton cycle with the Rankine Cycle.

Extracted steam to campus

Future

Using heat rate

- If we were to offload the electrical demand beyond the need for steam to Combined cycle generation, we predict:
- Pure CHP = 24,300 KW x 4550 BTU/ KWH = 110 million BTU / Hour
- Combined Cycle = 35,200 KW x 7,615
 BTU/KWH = 268 million BTU / Hour
- Total is 378 million BTU / Hour

It would have been

- Pure CHP = 24,300 KW x 4550 BTU/ KWH = 110 million BTU / Hour
- Conventional Condensing = 35,200 KW x 10,385 BTU/KWH = 366 million BTU / Hour
- Total is 476 million BTU / Hour

Reduction

476 – 378 = 98 million BTU / Hour or a 20.6% drop in fuel input and emissions.

Further improvement might come from full replacement to combined cycle CHP.

DSI Results

Circulating Fluidized Bed Boiler DSI

1 lb/MMBtu emission rate using CO2 based F-factor

Recent Coal vs Gas Performance

Thousands of lbs of boiler steam output

Thank you for your kind attention

This presentation is dedicated to the men and women of the T.B. Simon Heat and Power Plant who kept MSU powered through the toughest Michigan winter in several decades.

Backup Slides

Simon plant detail

- Built in 1965, 5th in the series of MSU plants.
- 4 boilers (1,200 kpph max) of steam 900 psig, 835F
- I HRSG (115 kpph max) with duct firing.
- All boilers on a common header
- 85 MW across 5 steam turbine generators
- 13.5 MW on 1 NG CT turbine (black start)
- 21 MW grid tie-line with local utility
- 318,028 MWH of electrical production in 2012

Know your zone for heating

A zone comparison

Institution	Stanford University	Michigan State University
Location	Palo Alto, CA	East Lansing, MI
Coordinates	37.4292° N, 122.1381° W	42.7336° N, 84.5467° W
Annual Heating Degree Days, 65°F base	Exactor of 2.5 in heat	7041 ing
Annual Cooling Degree Days, 65°F base	303 degree days	556
Climate zone	Mediterranean	Humid continental
Number of campus buildings	690	532
Space, square feet	14.8	21.7 million
Plant electric capacity, megawatt	49.0	98.5

In zones with lower heating degree days, you want to consider the total thermal process efficiency carefully

STEAM GENERATORS

UNITS 1 & 2	
Manufacturer	Wickes Boiler Company
Design	Pulverized Coal
Start-Up	1965 -1966
Capacity	250,000 lb. per hour
Operating Temperature	835° F @ Superheater Outlet
Operating Pressure	900 P.S.I.G.
Primary Fuels	Pulverized Coal - Natural Gas
Coal Consumption at Full Load	12 tons per hour

UNIT 3	
Manufacturer	Erie City Energy Division of Zurn Industries
Design	Pulverized Coal
Start-Up	1975
Capacity	350,000 lb. per hour
Operating Temperature	835° F @ Superheater Outlet
Operating Pressure	900 P.S.I.G.
Primary Fuels	Pulverized Coal - Natural Gas
Coal Consumption at Full	20 tons per hour
Load	

UNIT 4	
Manufacturer	Tampella Power Corporation
Design	Circulating Fluidized Bed
Start-Up	1993
Capacity	350,000 lb. per hour
Operating Temperature	835° F @ Superheater Outlet
Operating Pressure	900 P.S.I.G.
Primary Fuels	Coal - Natural Gas
Coal Consumption at Full Load	20 tons per hour
Limestone Consumption at Full Load	4 tons per hour

<u>UNIT 6</u>	
Manufacturer	Nebraska Boiler
Design	Heat Recovery Steam Generator
Start-Up	2006
Capacity	115,000 lb. per hour
Operating Temperature	835° F @ Superheater Outlet
Operating Pressure	900 P.S.I.G.
Primary Fuels	Natural Gas
Gas Consumption at Full Load	4200 lb. per hour

Power and Water T. B. Simon Power Plant Facts and Figures TURBINE GENERATORS

UNITS 1 & 2	
Manufacturer	Turbine – DeLaval Generator - Electric Machinery Inc
Description	3600 RPM, fully condensing, single automatic extraction. Steam turbine with direct connected electric generator and D.C. exciter.
Throttle Steam Conditions	825° F, 850 P.S.I.G.
Turbine Controlled Extraction Pressure	90 P.S.I.G.
Generator Electrical Characteristics	12.5 MW, .80 power factor, 13,800 volts, 3 phase, 60 Hertz, 3600 RPM, air cooled.

UNIT 3	
Manufacturer	General Electric Co.
Description	3600 RPM, Straight, non-condensing steam turbine with direct connected electric generator, static exciter
Throttle Steam Conditions	825° F, 850 P.S.I.G.
Turbine Controlled Extraction Pressure	90 P.S.I.G.
Generator Electrical Characteristics	3600 RPM, 15 MW, .85 power factor, 13,800 volts, 3 phase, 60 Hertz, 3600 RPM, 250 volts

UNIT 4	
Manufacturer	General Electric Co.
Description	Generator controlled General Electric extracting condensing steam turbine with direct coupled electric generator and brushless static exciter.
Throttle Steam Conditions	825° F, 850 P.S.I.G.
Turbine Controlled Extraction	90 P.S.I.G.
Pressure	
Generator Electrical Characteristics	3600 RPM, 21 MW, .85 power factor, 13,800 volts, 3 phase, 60 Hertz

TURBINE GENERATORS

UNIT 5	
Manufacturer	Dresser-Rand
Description	Condensing, single controlled extraction steam turbine with direct coupled electric generator with a brushless static exciter.
Throttle Steam Conditions	825° F, 865 P.S.I.G.
Turbine Controlled Extraction Pressure	90 P.S.I.G.
Generator Electrical Characteristics	3600 RPM, 24 MW, .85 power factor, 13,800 volts, 3 phase, 60 Hertz
Manufacturer	Solar Turbines Inc.
Description	Single shaft axial flow gas turbine with reduction gear and completely integrated ABB electric generator with a brushless rotating exciter
Primary Fuel	Natural Gas
Fuel Consumption at Full Load	6,500 lb. per hour
Emissions Control	Dry Low NOx Burners
Pressure Ratio	16:1

GENERAL INFORMATION

Cubic Content of Main Building 6,102,000 cubic feet (Units 1-4) Ground Area of Main Building 40,000 square feet (?) Height of Main Building 109 feet Units 1 & 2 - 80 feet **Height of Boilers** Unit 3 - 97 feet Unit 4 - 125 feet **Bunker Coal Storage Capacity** 2,000 tons Maximum Coal Storage at Site 100,000 tons **Coal System Capacity** 200 tons per hour East - 6 cells capable of cooling **Cooling Towers** 25,000 GPM of water with 2,140,000 cubic feet per minute of air Center - 4 cells cooling 20,000 gpm of water with 1,560,000 cubic feet per minute of air West - 3 cells cooling 19,500 gpm of water with 1,633,000 cubic feet per minute of air Units 1 & 2 - 8 Module, 2400 bag **Pollution Equipment** fabric filter Unit 3 - 4 Field Hot Side, **Electrostatic precipitator**

Unit 6 - Dry Low NOx Burners

WATER CAPACITIES

	Normal Water Level	Hydrostatic Test Water Level
Units 1 & 2	15,500 gal	19,233 gal
	129,115 lbs	160,215 lbs
Unit 3	21,608 gal	26,890 gal
	180,211 lbs	224,263 lbs
Unit 4	16,500 gal	23,023 gal
	136,941 lbs	191,782 lbs
Unit 6	3,975 gal	6,867 gal
	33,000 lbs	57,000 lbs

PLANT CAPACITIES

Steam (5 boilers)	1,315,000 lbs/hr
Electricity (6 turbine generators)	98.5 MW
CPCO Tie Line	25 MW

FISCAL YEAR 2011-2012 PLANT DATA

PEAK DEMANDS		1	TOTAL PRODUCTION		FUEL CONSUMPTION	
Boiler Steam	825,500 lbs/hr	E	Boiler Steam	4,568,883,000 lbs	Coal	113,547 tons
Sendout Steam	541,360 lbs/hr	5	Sendout Steam	2,496,724,000 lbs	Natural Gas	345,153 KCFT
Electricity	60,880 KW	E	Electricity	318,028,000 KWH	Biofuels	5,510 tons

ELECTRICAL SYSTEM				
Number of Circuits	18 - 13.8 KV to campus from plant	WATER STSTEIVERODUCTION		
Number of Circuits		Well Production	1,325,000,000 Gallons	
	5 - 4100V CITCUILS TOTTILL SUDSLALION	Book System Domand	E 600 CDM	
Length of Cable	71.47 miles	Peak System Demanu	3,000 GPIVI	

WATER SYSTEM GENERAL INFORMATION	
Number of Wells	Eighteen
Bore Depth	Nominally 400'
Bore Diameter	9", 12", 14" and 16"
Average :Pump Settings	250'
Pumps	8" Dia. 8-Stage, 9-Stage Vert.
	Turbine
Motors	50 Hp, 60 Hp, 75 Hp, 100 Hp 480
	V, 3-Phase
Average Pump Capacity	450 GPM
Well Transmission Main	8 miles, 10", 12", 14", 16"
Water Storage	1,000,000 Gal. Underground
Distribution Pumps	Four
Capacity	3400 GPM each
Motors	200 Hp, 480V, 3-Phase
Distribution System	Approximately 65 miles
Steam Lines	20 miles

Simon plant P&ID

