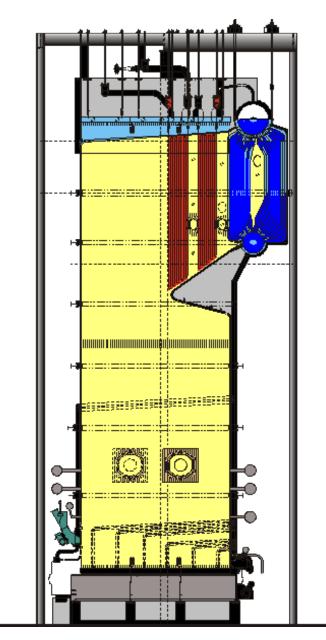


The Relationship Between Fuels, Boiler Design and Environmental Constraints Presentation to:

CIBO Annual Meeting Friday, October 24, 2008

BOILER SYSTEM DESIGN

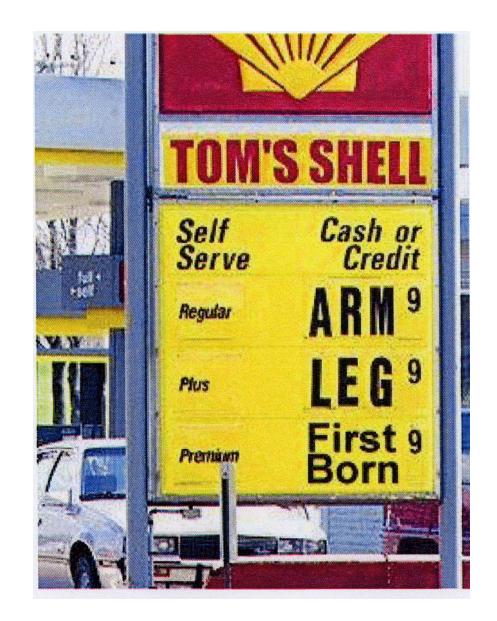


1. Start with the Fuel

2. Performance Requirements

3. Environmental Factors

BOILER SYSTEM DESIGN



C =

Start with the fuel

- Ultimate analysis
- HHV
- Moisture content
- Particle size distribution
- Particle morphology
- Friability
- Ash % and elemental analysis

FUEL COSTLY TOO

Table 6 Properties of U.S. Coals

	Anthracite	Pittsburgh #8 HV Bituminous	Illinois #6 HV Bituminous	Upper Freeport MV Bituminous	Spring Creek Subbitu- minous	Decker Subbitu- minous	Lignite	Lignite (S. Hallsville)	Lignite (Bryan)	Lignite (San Miguel)
State	-	Ohio or Pa.	Illinois	Pennsylvania	Wyoming	Montana	North Dakota	Texas	Texas	Texas
Proximate:										
Moisture	7.7	5.2	17.6	2.2	24.1	23.4	33.3	37.7	34.1	14.2
Volatile matter, dry	6.4	40.2	44.2	28.1	43.1	40.8	43.6	45.2	31.5	21,2
Fixed carbon, dry	83.1	50.7	45.0	58.5	51.2	54.0	45.3	44.4	18.1	10.0
Ash, dry	10.5	9.1	10.8	13.4	5.7	5.2	11.1	10.4	50.4	68.8
Heating value, Btu/lt										
As-received	11,890	12,540	10,300	12,970	9,190	9,540	7,090	7,080	3,930	2,740
Dry	12,880	13,230	12,500	13,260	12,110	12,450	10,630	11,360	5,960	3,200
MAF	14,390	14,550	14,010	15,320	12,840	13,130	11,960	12,680	12,020	10,260
Ultimate:										
Carbon	83.7	74.0	69.0	74.9	70.3	72.0	63.3	66.3	33.8	18.4
Hydrogen	1.9	5.1	4.9	4.7	5.0	5.0	4.5	4.9	3.3	2.3
Nitrogen	0.9	1.6	1.0	1.27	0.96	0.95	1.0	1.0	0.4	0.29
Sulfur	0.7	2.3	4.3	0.76	0.35	0.44	1.1	1.2	1.0	1.2
Ash	10.5	9.1	10.8	13.4	5.7	5.2	11.1	10.4	50.4	68.8
Oxygen	2.3	7.9	10.0	4.97	17.69	16.41	19.0	16.2	11.1	9.01
Ash fusion temps, F										
Reducing/Oxidizing:	Red Oxid	Red Oxid	Red Oxid	Red Oxid	Red Oxid	Red Oxid	Red Oxid	Red Oxid	Red Oxid	Red Oxid
ID			1930 2140	2750+ 2750+		2120 2420		2000 2210	2370 2470	
ST Sp.			2040 2330	• •	2160 2300	2250 2470		2060 2250	2580 2670	
ST Hsp.			2080 2400		2170 2320	2270 2490		2090 2280	2690 2760	
FT 0.0625 in.			2420 2600		2190 2360	2310 2510		2220 2350	2900+2900	
FT Flat		2750+2750+	2490 2700		2370 2700	2380 2760	+ 2300 2300	2330 2400	2900+2900	+ • •
Ash analysis:										
SiO ₂	51.0	50.58	41.68	59.60	32.61	23.77	29.80	23.32	62.4	66.85
Al ₂ O ₈	34.0	24.62	20.0	27.42	13.38	15.79	10.0	13.0	21.5	23.62
Fe ₂ O ₃	3.5	17.16	19.0	4.67	7.53	6.41	9.0	22.0	3.0	1.18
TiO ₂	2.4	1.10	0.8	1.34	1.57	1.08	0.4	0.8	0.5	1.46
CaO	0.6	1.13	8.0	0.62	15.12	21.85	19.0	22.0	3.0	1.76
MgO	0.3	0.62	0.8	0.75	4.26	3.11	5.0	5.0	1.2	0.42
NarO	0.74	0.39	1.62	0.42	7.41	6.20	5.80	1.05	0.59	1.67
K ₁ O	2.65	1.99	1.63	2.47	0.87	0.57	0.49	0.27	0.92	1.57
P ₂ O ₈		0.39		0.42	0.44	0.99	_		_	
SO ₃	1.38	1.11	4.41	0.99	14.56	18.85	20.85	9.08	3.50	1.32

Note: HV = high volatile; MV = medium volatile; ID = initial deformation temp; ST = softening temp; FT = fluid temp; Sp. = spherical; Hsp. = hemispherical.

WOOD WASTE

Reporting Basis >	As Rec'd		Dry	Air Dry
Proximate (%)				
Moisture Ash Volatile Fixed C Total	52.640.4033.4613.50100.00		0.00 0.84 70.66 <u>28.50</u> 100.00	1.72 0.83 69.44 <u>28.01</u> 100.00
Sulfur Btu/lb (HHV) MMF Btu/lb MAF Btu/lb Air Dry Loss (%	0.02 4105 4123	51.81	0.04 8668 8748 8742	0.04 8519
Ultimate (%)				
Moisture Carbon Hydrogen Nitrogen Sulfur Ash Oxygen* Total	52.64 25.13 2.94 0.13 0.02 0.40 <u>18.74</u> 100.00		0.00 53.06 6.20 0.28 0.04 0.84 <u>39.58</u> 100.00	1.72 52.15 6.10 0.28 0.04 0.83 <u>38.88</u> 100.00
Chlorine**	<0.01		<0.01	<0.01
Forms of Sulfur Sulfate Pyritic Organic	(as S.%)		Lb. A Lb. S HGI= As Re	Alkali/MM Btu= 0.09 Ash/MM Btu= 0.97 502/MM Btu= 0.09 @ % Moisture ec'd. Sp.Gr.= Swelling Index=
Total	0.02	0.04		
Water Soluble A	lkalies (%)			
Na20				

K20

NG:

* Oxygen by Difference.
** Not usually reported as part of the ultimate analysis.

6

WOOD WASTE ASH

Initial

Fluid

Softening

Hemispherical

Elemental Analysis of Ash (%)

SI02	10.03
AL203	2.52
TI02	0.38
FE203	1.50
CAO	33.40
MGO	4.38
NA20	0.91
K20	8.19
P205	2.27
SO3	0.66
CL	0.11
CO2	<u>24.82</u>
Total	94.17

Ash Fusion Temperature (°F)

Oxidizing Atmosphere Reducing Atmosphere

FUEL ANALYSIS

Sample: Wheat Midds

Ultimate Analysis		Ash Elemental Analysis	5
Carbon	41.29	SiO2	3.80
Hydrogen	4.98	A12O3	0.51
Oxygen	32.85	TiO2	0.04
Nitrogen	2.52	Fe2O3	0.51
Sulfur	0.05	CaO	2.48
Ash	5.14	MgO	14.50
Moisture	<u>13.17</u>	Na2O	0.27
Total	100	K2O	24.80
		P2O5	52.73
HHV	7,033	SO3	0.32
		CI	0.01
		CO2	0.17

SAMPLE IDENTIFICATION

Stillage 1 Liter

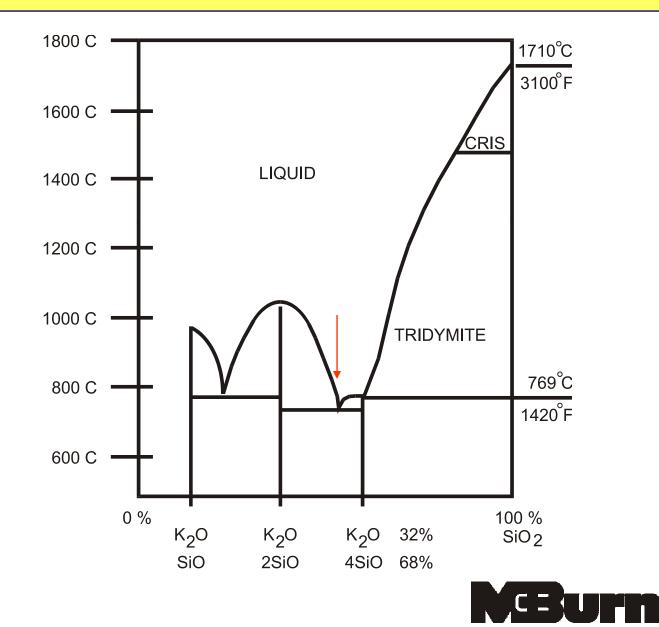
Moisture 96.67 0.00 4.15 Ash 0.45 13.41 12.85 Volatile 2.10 63.05 60.43 Eved C 0.78 23.54 22.37 Total 100.00 100.00 100.00 Suffur <0.01 0.20 0.19 Btu/lb (HIV) 313 3292 Btu/lb @ 65% H_0 9016 MMF But/lb 314 11002 0.415 AF But/lb 10863 10863 10863 Air Dry Loss (%) 96.67 0.00 4.15 Carbon 1.80 54.19 51.94 Hydrogen 0.17 5.09 4.88 Nitragen 0.08 2.49 2.39 Sulfur <0.01 0.20 0.19 Ash 0.45 13.41 12.85 Oxygen* 0.83 24.62 23.60 I tota' 100.00 100.00 100.00 Chlorine** 0.011 0.334 0.320	Reporting Basis > Proximate (%)	As Rec'd.	Dry	Air Dry
Ash 0.45 13.41 12.85 Volatile 2.10 63.05 60.43 Hwed C 0.78 20.54 22.57 Total 100.00 100.00 100.00 Suffur <0.01		96.67	0.00	4.45
Volanie 2.10 63.05 60.43 Fried C 0.78 23.54 22.57 Total 100.00 100.00 100.00 Sulfur <0.01				
Fixed C 0.78 23.54 22.57 Total 100.00 100.00 100.00 Sulfur <0.01				
Total 100.00 100.00 100.00 100.00 Sulfur <0.01				
Sulfur <0.01 0.20 0.19 Sulfur <0.01				
Btu/lb (IHV) 313 3292 Btu/lb @ 65% H₂O 9016 MMF But/lb 314 11002 MAF But/lb 10863 Air Dry Loss (%) 96.53 Ultimate (%) Moisture Moisture 96.67 Oarbon 1 80 Sulfur 0.00 4.88 2.49 Nitrogen 0.08 2.49 2.39 Sulfur <0.01	reter	100.00	100.00	100.00
Btu/lb (IIIIV) 313 3292 Btu/lb @ 66% H_O 9016 MMF But/lb 314 11002 MAF But/lb 10863 Air Dry Loss (%) 96.53 Ultimate (%) Moisture Moisture 96.67 0.00 Carbon 1 80 54.19 Sulfur 0.17 5.09 Air Dry Loss (%) 90.16 Warogen 0.17 Sulfur <0.01	Sulfu	<0.01	0.20	0.19
MMF But/lb 314 11002 MAF But/lb 10863 Air Dry Loss (%) 96.53 Ultimate (%) 96.67 0.00 Moisture 96.67 0.00 Carbon 1.80 54.19 1lydrogen 0.17 5.09 Ash 0.08 2.49 Sulfur <0.01	Btu/lb (FIHV)	313		
MAF But/lb 10863 Air Dry Loss (%) 96.53 Ultimate (%) 96.67 0.00 Moisture 96.67 0.00 Air Dry Loss (%) 96.53 Ultimate (%) 51.94 Moisture 96.67 0.00 Natogen 0.17 5.09 Ash 0.45 13.41 Natogen 0.45 13.41 Ash 0.45 13.41 100.00 100.00 100.00 Chlorine** 0.011 0.334 Organic	MMF But/lb	314		10 3010
Air Dry Loss (%) 96.53 Ultimate (%) Moisture 96.67 0.00 4.15 Carbon 1.80 54.19 51.94 Hydrogen 0.17 5.09 4.88 Nitrogen 0.08 2.49 2.39 Sulfur <0.01				
Moisture 96.67 0.00 4.15 Carbon 1.80 54.19 51.94 Hydrogen 0.17 5.09 4.88 Nitrogen 0.08 2.49 2.39 Sulfur <0.01	Air Dry Loss (%)			
Moisture 96.67 0.00 4.15 Carbon 1.80 54.19 51.94 Hydrogen 0.17 5.09 4.88 Nitrogen 0.08 2.49 2.39 Sulfur <0.01	Illtimate (%)			
Carbon 1 80 54.19 51.94 Hydrogen 0.17 5.09 4.88 Nitrogen 0.08 2.49 2.39 Sulfur <0.01		06.67	0.00	1.15
Hydrogen 0.17 5.09 4.88 Nitrogen 0.08 2.49 2.39 Sulfur <0.01				
Nitrogen 0.08 2.49 2.39 Sulfur <0.01				
Sulfur <0.01				
Ash 0.45 13.41 12.85 Oxygen* 0.83 24.62 23.60 Total 100.00 100.00 100.00 Chlorine** 0.011 0.334 0.320 Forms of Sulvur (as S %) Lb Alkaline/MM Btu= 5.62 Sulfate Lb. Ash/MMBtu= 14.25 Lb. Ash/MBtu= 14.25 Pyritic Lb. SO2/MMBtu= 0.42 HGI= @ % Moisture Organic				
Oxygen* 0.83 24.62 23.60 'total 100.00 100.00 100.00 Chlorine** 0.011 0.334 0.320 Forms of Sulvur (as S %) Lb Alkaline/MM Btu= 5.62 Lb. Ash/MMBtu= 14.25 Sulfate Lb. SO2/MMBtu= 0.42 HGI= @ % Moisture Pyritic As Recid. Sp.Gr.÷ Free Swelling Index= Organic Free Swelling Index= F-Factor(dry),DSCF/MM Btu= 9.627 Total <0.01				
Total 100.00 100.00 100.00 Chlorine** 0.011 0.334 0.320 Forms of Sulvur (as S %) Lb. Alkaline/MM Btu= 5.62 Lb. Asb/MMBtu= 14.25 Sulfate Lb. SO2/MMBtu= 0.42 HGI= @ % Moisture Pyritic As Rec d. Sp. Gr.= Free Swelling Index= Organic				
Chlorine** 0.011 0.334 0.320 Forms of Sulvur (as S %) Lb. Alkaline/MM Btu= 5.62 Sulfate Lb. Ash/MBtu= 14.25 Pyritic Lb. SO2/MBtu= 0.42 Organic HGI= @ % Moisture Total <0.01				
Forms of Sulvur (as S %) Lb. Alkaline/MM Btu= 5.62 Sulfate Lb. Ash/MMBtu= 14.25 Pyritic Lb. SO2/MMBtu= 0.42 Organic HGI= @ % Moisture Total <0.01	Fotal	100.00	100.00	100 00
Forms of Sulvur (as S %) Lb. Ash/MMBtu= 14 25 Sulfate Lb. SO2/MMBtu= 0.42 Pyritic HGI= @ % Moisture Organic Free Swelling Index= Total <0.01	Chlorine**	0.011	0.334	0.320
Sulfate L b. SO2/MMBtu= 0.42 Pyritic HGI= @ % Moisture Organic As Recid. Sp.Gr.= Total <0.01				Lb_Alkaline/MM Btg= 5.62
Sulfate HGI= @ % Moisture Pyritic As Recid. Sp.Gr.= Organic Free Swelling Index= Total <0.01	Forms of Sulvur (as S	%)		
Pyritic As Recid. Sp.Gr.= Organic Free Swelling Index= F-Factor(dry),DSCF/MM Btu= 9.627 Total <0.01 0.20 Water Soluble Alkalies (%) Report Prepared By Na20 Gerard H. Cunningham K20 Fuels Laboratory Supervisor	Sulfate			
Organic Free Swelling Index= Total <0.01				
Total <0.01 0.20 F-Factor(dry),DSCF/MM Btu= 9.627 Water Soluble Alkalies (%) Report Prepared By Na20 Gerard H. Cunningham K20 Fuels Laboratory Supervisor				
Lotal 0.20 Water Soluble Alkalies (%) Report Prepared By Na20 Gerard H. Cunningham K20 Fuels Laboratory Supervisor	organic		1 <u>12 - 5</u> 13	
Water Soluble Alkalies (%) Na20 K20 K20 K20	Total	<0.01	0.20	h-Factor(dry),DSCF/MM.Btu= 9.627
Na20 Gerard H. Cunningham K20 Fuels Laboratory Supervisor				
K20 Fuels Laboratory Supervisor	Water Soluble Alkalie:	s (%)	Rep	ort Prepared By
K20 Fuels Laboratory Supervisor	Na20		Gera	ard H. Cunningham
*Oxygen by Difference	K20			
	*Oxygen by Difference	9		1

** Not usually reported as part of the ultimate analysis

SAMPLE IDENTIFICATION

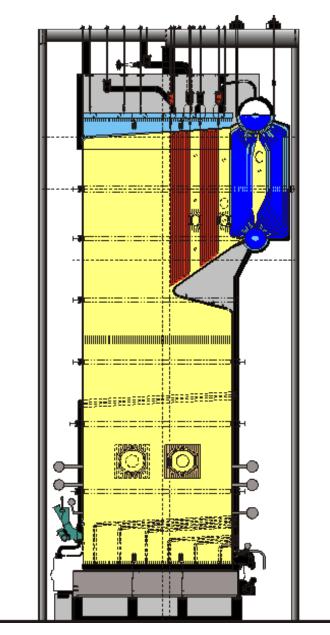
Stillage 1 Liter

Elemental Analysis of Ash (%)


Ash Fusion Temperature (°F)

SI02	24.24		Oxidizing	Reducing
AL203	1.27		Atmosphere	Atmosphere
TI02	0.11			
FE203	0.73	Initial	1457	1484
CAO	2.36	Softening	1507	1549
MGO	1.98	Hemispheri	ical 1400	1428
NA20	6.74	Fluid	1588	1600
K20	32.70			
P205	21.66			
SO3	1.70			
CL	1.99		Report Prepare	5
CO2	<u>1.68</u>		Gerard H. Cunn Fuels Laborator	•
Total	94.17			y Supervisor

Note: The ash was calcined @ 1110 °F (600 C) prior to analysis.



Phase Diagram for K₂O-SiO₂

BOILER SYSTEM DESIGN

C =

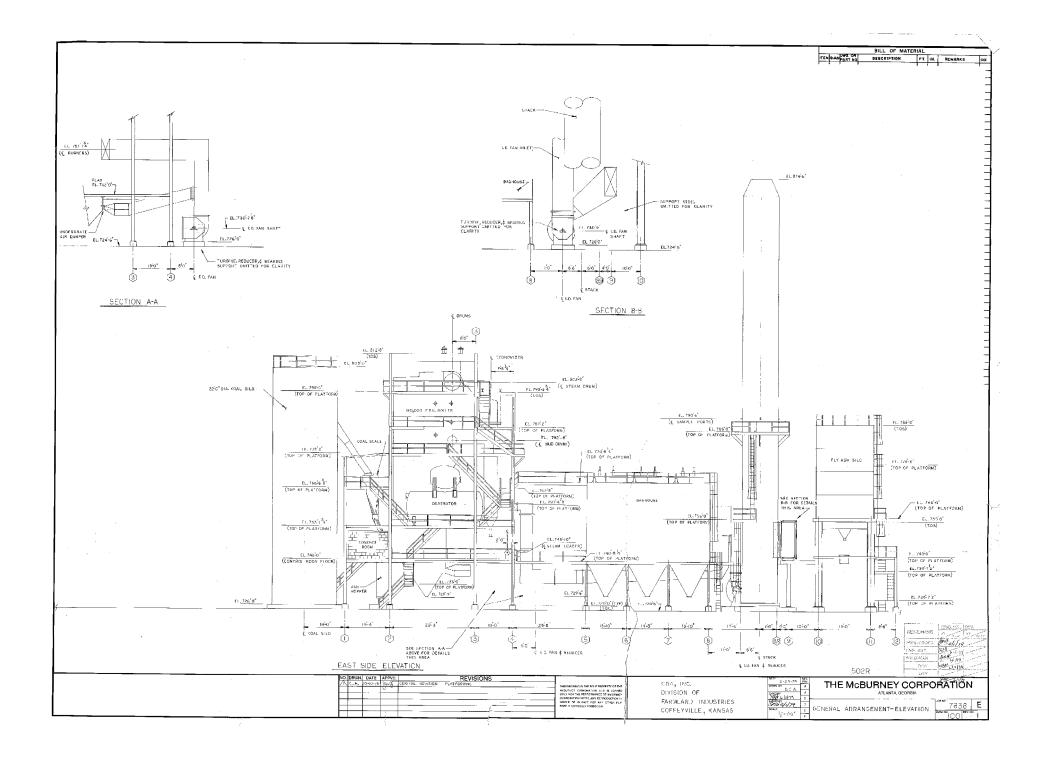
System Performance

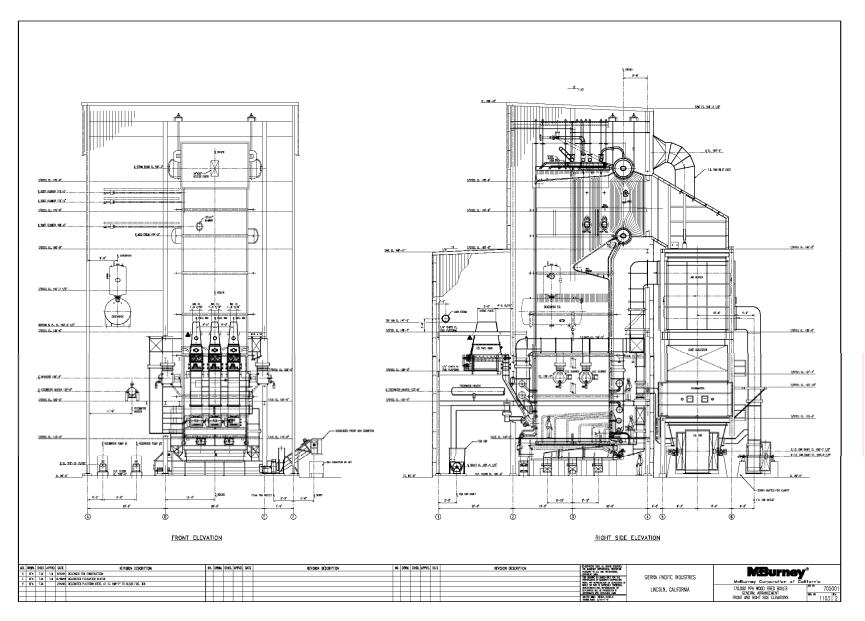
- Steam capacity, Pressure, Temperature
- Thermal efficiency
- Operations / Maintenance
- Reliability / Redundancy
- Emissions limits (NOx, CO, PM, PM-10, PM-2.5, SO2, VOC)

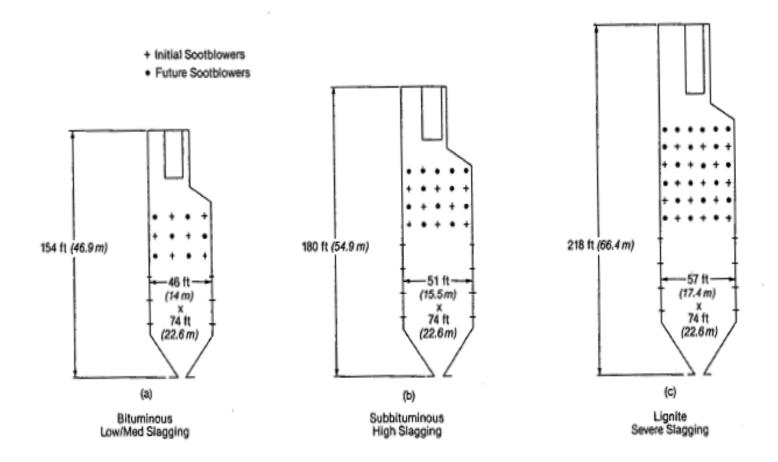
ASME BOILER PERFORMANCE

FUEL			SITE CONDITIONS		
Туре		Dry chaff	Site Elev.	(fasl)	1,000
Ultimate Analysis	(% by wt)		Bar. Press.	(in. Hg)	28.86
C - Carbon	(%)	41.29		(psia)	14.17
H2 - Hydrogen	(%)	4.98			
O2 - Oxygen	(%)	32.85	STEAM & FEEDWATER	ર	
N2 - Nitrogen	(%)	2.52	Main Steam Flow	(pph)	110,000
S - Sulfur	(%)	0.05	Main Steam Press.	(psig)	600
Ash	(%)	5.14	Main Steam Temp.	(F)	750
H20 - Moisture	(%)	13.17			
TOTAL	(%)	100.00	Drum Oper. Press.	(psig)	650
HHV	(Btu/lb)	7,033	Blowdown	(%)	3.00
			Feedwater Temp.	(F)	228
Fuel input	(lb/hr)	22,731			
Heat input	(MMBtu/hr)	159.866	Heat Absorbed	(MMBtu/hr)	131.049
AIR			FLUE GAS		
Comb. Air to Burner	(lb/hr)	132,162	Flue Gas	(lb/hr)	159,355
	(ACFM)	31,334		(ACFM)	54,470
Air Leakage	(lb/hr)	5,746			
	(ACFM)	1,362	Flue Gas Temp. at Exit	(F)	325
Total Air	(lb/hr)	137,908			
	(ACFM)	32,696			
			Flue Gas Density	(lb/ft3)	0.0488
Dry Bulb Temp.	(F)	.80	DsCFM		30,000
Relative Humidity	(%)	60	HEAT LOSSES		
Moisture in Air	(lb/lb dry air)	0.014		(%)	5.29
Ambient Density	(lb/ft3)	0.0703	H2 & H20 in Fuel	(%)	9.50
			Moisture in Air	(%)	0.13
Excess Air at Burner	(%)	15.00	Unburned Carbon	(%)	1.00
Excess Air at Exit	(%)	20.00		(%)	0.60
Air Leakage	(% of Total Air)	4.17	Unacc. for & Mfg. Margi	n (%)	1.50
RESIDUE					
Ash Produced	(lb/hr)	1,168	Total Heat Loss	(%)	18.03
Unburned Carbon	(lb/hr)	110			
Total Residue	(lb/hr)	1,279	Boiler Efficiency	(%)	81.97

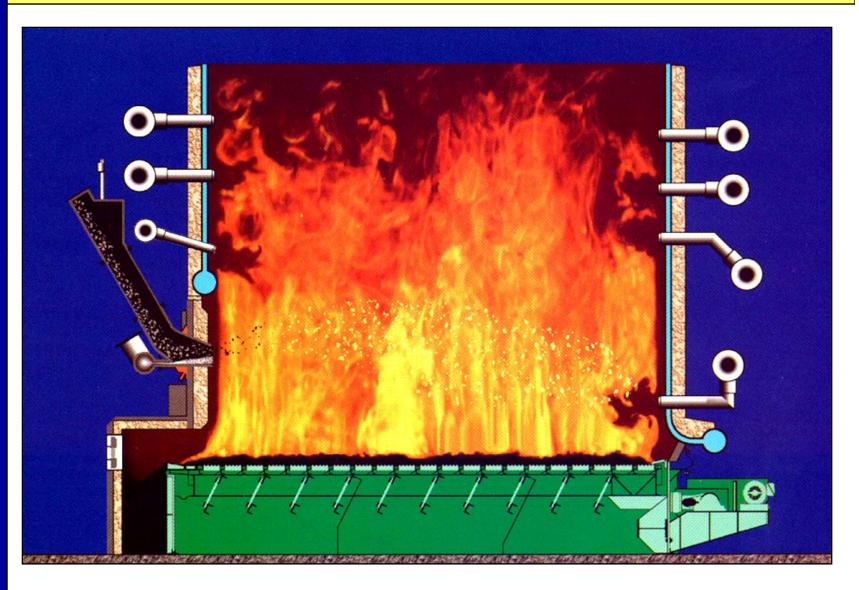
FURNACE / BOILER DESIGN CRITERIA


- Time, temperature and turbulence in the furnace are optimized for good combustion.
- Low volume heat release rate for sufficient retention time—maximizes carbon burnout and minimizes NOx and CO emissions (longer residence time).
- Longer residence time promotes good burnout and minimizes carryover of air borne fuel particles.
- Low velocities through boiler convection sections to minimize erosion.
- NOx emissions vary directly with fuel bound nitrogen content and excess air.
- CO emissions vary directly with biomass fuel moisture content and excess air.




HEAT RELEASE RATE

- Coal Bituminous Grate – 750,000 Btu/sq.ft. (approx) Volumetric – 20,000 – 25,000 Btu/cu.ft.
- Biomass Wood Wastes
 Grate 0 850,000 1,000,000 Btu/sq.ft.
 Volumetric 15,000 20,000 Btu/cu.ft.



.

Fig. 19 Influence of slagging potential on furnace size. (See Table 6.)

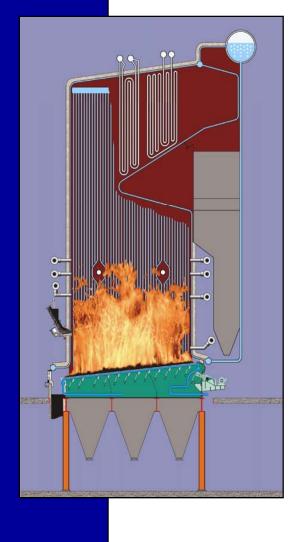
DETROIT VCG STOKER (1 of 2)

DETROIT VCG STOKER (2 of 2)

C=

DETROIT HYDROGRATE STOKER (1 of 3)

•Water-cooled grate surface is tightly interlocked to reduce tramp air flow and cool the grate castings properly.


•No moving surfaces between grate castings.

•High combustion air temperature capability in order to burn high moisture biomass without concern for damaging grates.

•68 units in operation

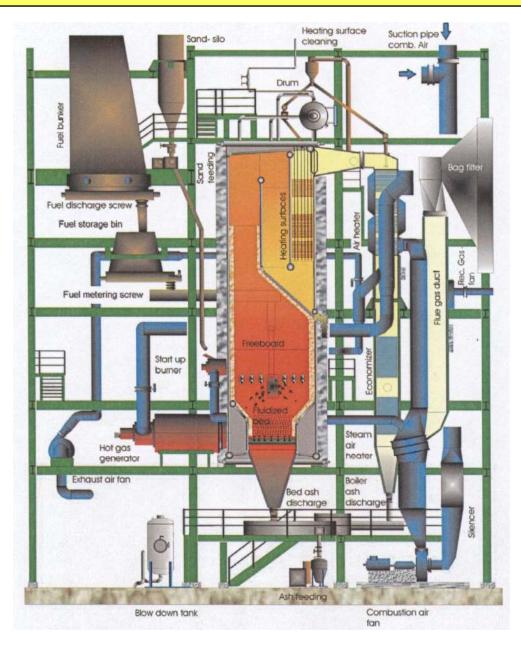
DETROIT HYDROGRATE STOKER (2 of 3)

WATER COOLED GRATE ADVANTAGES:

- Dryer (sanderdust and TDF) and finer biomass fuels can be fired without risk of damaging the grate surface.
- Auxiliary Gas, Oil, or PC burners can be used without additional grate protection.
- Best against catastrophic failure. If the undergrate air flow is stopped, the cooling is maintained by the water. If the cooling water were to stop the grate can be temporarily cooled by the increase of undergrate air.
- Capable of withstanding higher undergrate air temperatures to fire higher moisture fuels.

DETROIT HYDROGRATE STOKER (3 of 3)

WATER COOLED GRATE SURFACE:



SUSPENSION BURNERS

VERA Plant Hamburg

BIOMASS COMBUSTION SYSTEM OPTIONS

1. Fluid Bed Technologies

- Bubbling Fluid Bed (BFB)
- Circulating Fluid Bed (BFB)

2. Stoker Technologies

- Mass Feed/Reciprocating Stoker
- Spreader Stoker
 - Stationary air cooled grate
 - Stationary water cooled grate
 - Air cooled traveling grate
 - Air-cooled vibrating grate
 - Water-cooled vibrating grate

TECHNOLOGY COMPARISON

Bubbling Fluid Bed	Spreader Stoker	
Capital Cost:	Capital Cost:	
Generally higher due to more complex fuel and ash systems	Lower capital cost	
Operating Costs:	Operating Costs:	
Higher Operating Costs – up to 60" static for FD fans	Lower – FD fan static is lower resulting in reduced fan operating HP requirements	
Availability:	Availability:	
<85% in some cases depending on fuels	>98%	
Complexity:	Complexity:	
More operator training required	Less operator training required	
Fuel flexibility:	Fuel flexibility:	
Somewhat limited to high	Very flexible, but not preferred	
moisture, high ash fuels	for fine dry material	
Emissions: NOx 0.15-0.25	Emissions: NOx <0.20-0.25	
CO 0.20-0.40	CO 0.20-0.40 ²⁷	

TECHNOLOGY COMPARISON

Suspension Firing	Gasification
Capital Cost:	Capital Cost:
Moderately higher than stoker due to fuel preparation system	Very high capital cost due to flue gas clean-up and cost of gasifier
Operating Costs:	Operating Costs:
Higher Operating Costs – up to 60" static for FD fans	High Operating Costs due to fan HP requirements and unburned carbon in the bottom ash
Availability: >95%	Availability: Developing technology, limited proven experience
Complexity: More operator training required	Complexity: More operator training required
Fuel flexibility: Limited to dry fine fuels	Fuel flexibility: Very flexible
Emissions: NOx0.15-0.25CO0.20-0.40	Emissions: Very low theoretically

- CE

STOKER SYSTEM DESIGN (1 of 4)

Mass Feed Stoker	Spreader Stoker
Fuel Moisture:	Fuel Moisture:
40% to 60%	10% to 60%
Fuel Bed:	Fuel Bed:
Thick stable fuel bed, which assists with boiler turndown, but has poor load response characteristics	 Thin fuel bed with high burning rates and semi-suspension mode of firing. Fine particles suspension.
	•Heavier fuel 🚗 grate.
	The combination of suspension firing and a fast burning fuel bed makes this method of firing extremely responsive to changes in load demand.
Load Response:	Load Response:
Slow: <5% per minute	Fast: >30% per minute

STOKER SYSTEM DESIGN (2 of 4)

Mass Feed Stoker	Spreader Stoker
Grate Heat Release:	Grate Heat Release:
GHR 1.1 – 1.3 MW/m² (HHV)	GHR 2.3 – 2.6 MW/m² (HHV)
0.7 – 1.0 MW/m² (LHV)	1.2 – 2.0 MW/m² (LHV)
Stoker/Grate Operation:	Stoker/Grate Operation:
Continuous operation with several grate sections moving within the heat zone.	 (3) vibrating grate sections with intermittent vibration. The vibrating grate only vibrates for 2 to 3 seconds every 8 to 10 minutes.
Maintenance Requirements:	Maintenance Requirements:
>\$40,000 (US) per year for grate bars and refractory.	<\$15,000 (US) per year for grate bars and refractory.
Drive Type:	Drive Type:
Hydraulic	7.5 HP electric motors coupled to an eccentric drive per stoker
	module. 30

STOKER SYSTEM DESIGN (3 of 4)

Mass Feed Stoker	Spreader Stoker
Lubrication Requirements:	Lubrication Requirements:
Lubrication is required for the hydraulic drives, bearings, shafts and cylinders in the hot combustion air zones.	None required since there are no bearings or shafts in the hot combustion air zones.
Excess Air:	Excess Air:
50%-100%	25%-40%
Grate Side Seals:	Grate Side Seals:
The seal between the moving grate and the furnace have to be maintained.	The effective air seal design between the stationary and moving surfaces of the spreader stoker results in better air control and lower excess air requirements. The ability to operate at lower levels of excess air reduces emissions and improves boiler efficiency. 31

STOKER SYSTEM DESIGN (4 of 4)

Mass Feed Stoker	Spreader Stoker
Grate Bar Material: Cast or ductile iron, which limits the combustion air temperature.	Grate Bar Material: Water-cooled ductile iron or stainless steel, which allows hotter combustion air temperatures to be used to assist with the combustion of wet wood fuel.
Undergrate/Overfire Air Ratio: 80/20 (more undergrate air is required due to the thicker fuel bed)	Undergrate/Overfire Air Ratio: 50/50 and can be designed for 35/65 depending on fuel type
Assembly Requirements: Reciprocating grate stoker is shipped loose in many pieces requiring additional construction costs.	Assembly Requirements: Vibrating grate stokers are shop assembled and shipped in modules, which reduces construction costs.

SPREADER FIRING OVERVIEW

Technology Separates Fuel for Proper Combustion

 Large Particles for Grate Firing / Small Particles for Suspension Firing

Grate Firing

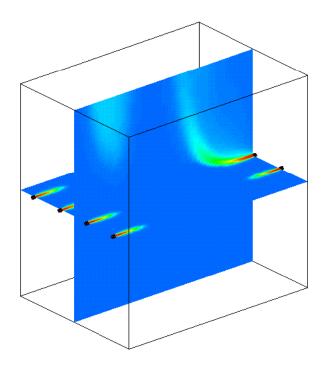
- Larger particles are higher in mass, high moisture, therefore need more time to dry and volatilize.
- As particles dry / volatilize size and density decrease
- Terminal velocity is reduced which reintroduces particles into the suspension fired combustion zone.
- Larger particle size naturally have increased residence time-burn slower and help sustain combustion.

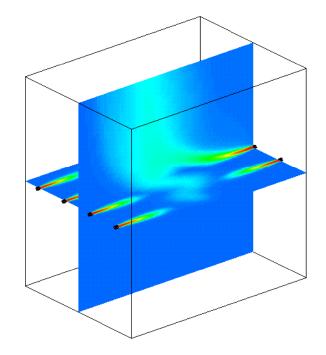
Suspension Firing

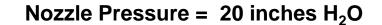
- Smaller particles with lower terminal velocities dry/volatize in suspension over the bed flame.
- Smaller particles are less dense with lower mass of moisture.
- Smaller particles have higher surface area burn quickly, help dry/volatilize higher moisture particles.

BENEFITS OF VIBRATING GRATE STOKER

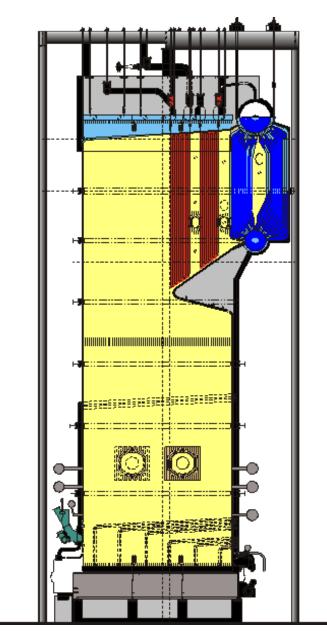
- Vibrating surface simplifies grate cooling.
- Automatic ash discharge for continuous operation.
- High availability with low maintenance costs.
- High boiler steam capacities.
- Vibrating bed reduces fuel piling and improves fuel distribution.
- Low leakage resulting in lower operating levels of excess air.

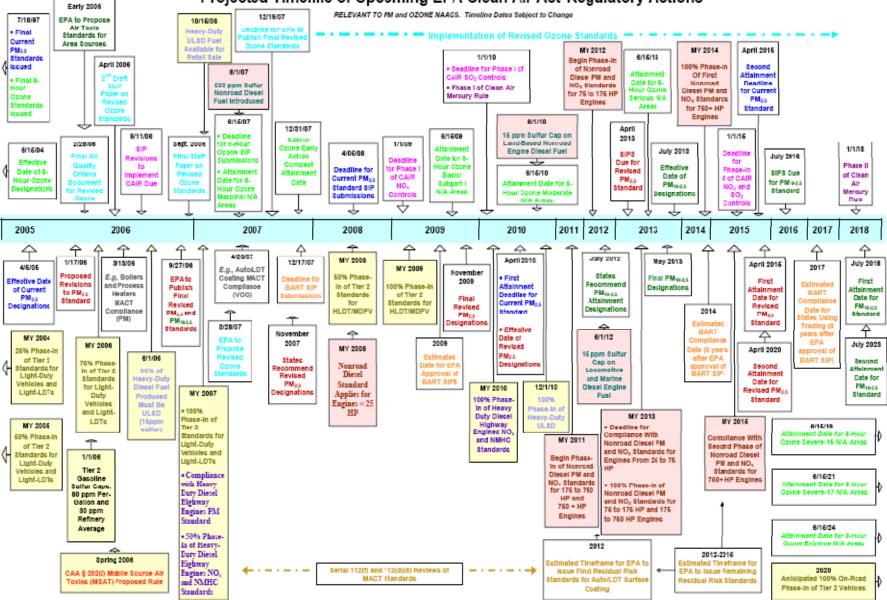

OVERFIRE AIR


- Proper turbulence in upper furnace assures good fuel/air mixing (minimizes CO and VOC emissions).
- Staged combustion reduces NOx emissions.
- Select Radial and Axial Jet Velocities to Match Vertical Cross Flow and Buoyancy Effects
- Interlaced (Staggered) Design to provide an Effective Curtain of Combustion Air

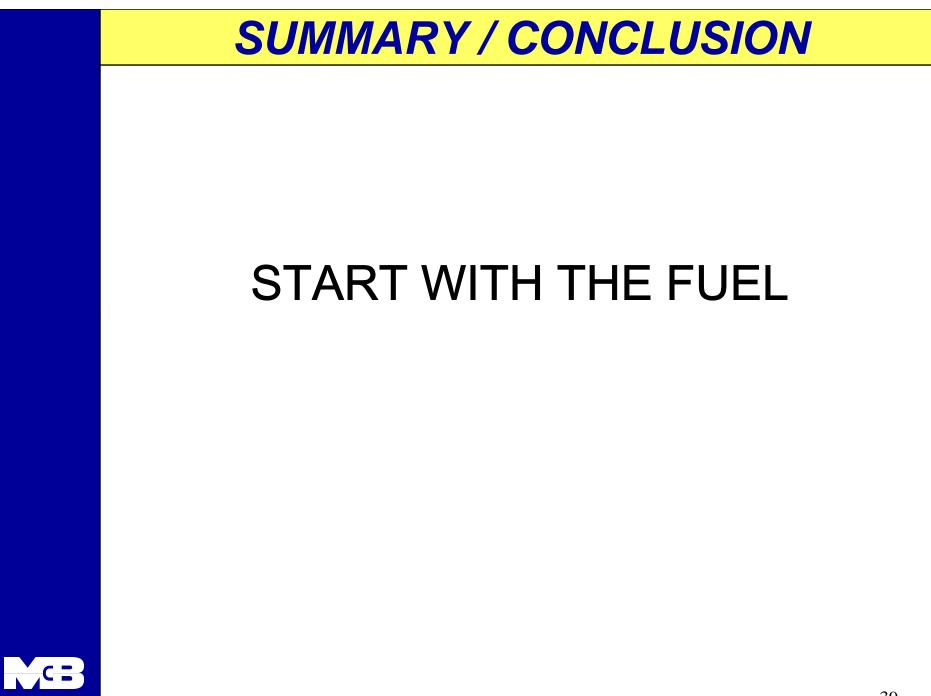

OVERFIRE AIR—CFD

4" diameter nozzles @ 5" and 20" w.g. pressure


Nozzle Pressure = 5 inches H₂O


BOILER SYSTEM DESIGN

Other Factors


- Process controls
- Auxiliary fuel(s)
- Space limitations
 - Future plans
 - Plant expansion
 - Tighter emissions
 - Other fuels

Projected Timeline of Upcoming EPA Clean Air Act Regulatory Actions

Aliance of Automobile Manufacturers DRAFT 4/7/06

