

Continuous Compliance Monitoring Data Gone Bad

8 December 2015 CIBO EE Meeting Brent Fitzgerald bfitzgerald@trinityconsultants.com

Outline

- > Overview of a DAHS
- > DAHS Basics
- > Examples of DAHS Gone Bad
- > How to QA Your DAHS

Overview of a DAHS

- > DAHS: Data Acquisition & Handling System
- > Twin Purpose of a DAHS
 - Demonstrate compliance with state and federal rules and standards
 - Provides real-time data to boiler operators
- > Oftentimes, a black box
- > Potential perils
 - False positive
 - False negative

DAHS Basics

- > Typical Emissions
 - Mass
 - lb/hr, ton/day, etc.
 - Concentration
 - ppm, lb/MMBtu, etc.
 - Opacity
 - **\rightarrow** %

- > Typical Parameters
 - Temperature (°F)
 - Exhaust Flow (scfm)
 - Excess dry O₂ (%)
 - Excess wet O₂ (%)
 - Pollutant concentration (ppm)
 - Opacity (%)

DAHS Basics

> Equation A

- > lb/hr = ppm × Ideal Gas Law Constant × wet exhaust × (100% - moisture)
- > Equation B
 - ❖ Ib/MMBtu = ppm × Ideal Gas Law Constant × Fd factor × O₂ correction

Ideal Gas Law Conversion	р	1atm
	V	0.000001(1 ppm = 10^-6)
	R	0.7302ft3 atm/mol R
	Т	528R
	MW	28lb/mol CO
		64lb/mol SO2
		46lb/mol NO2
	m	7.262E-08lb/ft3 for 1 ppm of CO
		1.660E-07lb/ft3 for 1 ppm of SO2
		1.193E-07lb/ft3 for 1 ppm of NO2

DAHS Basics

- > Data Reduction Rules
 - \bullet 1-min \rightarrow 15-min \rightarrow 1-hr
 - Include all data unless
 - CEMS maintenance/repair or system failure
 - Daily zero & span calibration drift tests
 - Hourly data validity check

DAHS Procedures

- > 40 CFR 60
 - §60.13 Monitoring Requirements
- > 40 CFR 63
 - §63.8 Monitoring Requirements
- > 40 CFR 75
 - 75.30-37 Missing Data Substitutions

Examples of DAHS Gone Bad

- > Triggers/Alarms
- > Form of the Standard
- > Multi-Range Analyzer
- > Incorrect Calculations
- > Erroneous Data

Examples - Trigger/Alarm

- > Design Value
 - NO_X daily limit of 0.085 lb/MMBtu, but
 - Exceedance alarm set at 0.095 lb/MMBtu
- > Design Value Units
 - NO_x daily limit of 0.65 ton/day, but
 - Exceedance alarm set at 1,300 lb/day

Examples - Form of the Standard

- > Boiler MACT limit states
 - HCI 0.0017 lb/MMBtu, except during periods of startup and shutdown
- > But,
 - DAHS includes all emissions, even during periods of startup and shutdown

Examples - Multi-Range Analyzer

- > High/Low Range CO Analyzer
 - Low Range: 0 300 ppm
 - High Range: 0 3,000 ppm
- > Potential Errors
 - Not performing daily calibration checks
 - Relying on only high range measurements
 - Not correctly toggling/combining measurements from high/low ranges

Examples - Incorrect Calculations

- > F Factor
 - Wood vs. Wood Bark (Table 19.2 to 40 CFR 60 Appendix A)
 - Fd: 9,240 dscf/MMBtu vs 9,600 dscf/MMBtu
 - Fuel-specific calculations from ultimate analysis

$$F_d = \frac{K(K_{kd}\%H + K_c\%C + K_s\%S + K_n\%N - K_o\%O)}{GCV} \qquad \text{Eq. 19-13}$$
 View or download PDF
$$F_w = \frac{K[K_{kw}\%H + K_c\%C + K_s\%S + K_n\%N - K_o\%O + K_w\%H_2O]}{GCV_w} \qquad \text{Eq. 19-14}$$
 View or download PDF
$$F_c = \frac{K(K_{cc}\%C)}{GCV} \qquad \text{Eq. 19-15}$$
 View or download PDF

Examples - Incorrect Calculations

- > Correcting for Excess O₂
 - Equation to convert to stoichiometric
 - $(20.9 0) / (20.9 \text{excess } O_2)$
 - Mixing up O₂ dry (always larger) and O₂ wet (always smaller)
 - Using wet rather than dry will under-report lb/MMBtu emissions

Examples - Incorrect Calculations

- > How to calculate lb/MMBtu when O2 dry approaches ambient (20.9%)?
 - ❖ CO: 300 ppm
 - ♣ Dry O₂: 20%
 - Fd Factor for Bituminous: 9,780 dscf/MMBtu
 - Equation B Output: 4.95 lb/MMBtu
- > Arbitrary Cap
 - If cap is 2.0 lb/MMBtu, then DAHS reports 2.0 lb/MMBtu
- > Diluent Cap
 - For Boilers, 5.0% CO₂ and 14.0% O₂
 - 2.1.2.1.(b) of Appendix A to 40 CFR 75
 - For non-Part 75 sources, check your state for guidance
 - ❖ Substituting 14.0% dry O₂ for 20% yields 0.65 lb/MMBtu

Examples - Erroneous Data

- > Incorrectly including data when
 - CEMS in repair or maintenance
 - Daily calibration checks
 - ◆ Out-of-span parameter, e.g. wet O₂ > dry O₂
 - A given hour fails the data validity check per 40 CFR 60.13(h)(2)
 - At least one data point from each quadrant

How to QA Your DAHS

- > Assistance from DAHS Vendor
 - Request summary of data validation rules, equations, averages, and reports
 - Examine each logarithm and data source in the DAHS database
- > External Review
 - Manually calculate values in spreadsheets and compare against DAHS

Discussion & Questions

