Boiler Water Chemistry: Getting From the Source to the Boiler

Colleen M. Layman, PE
colleen.layman@hdrinc.com
Goals

- Minimize Scaling
- Limit Deposition
- Prevent Corrosion
- Prevent Efficiency Loss
- Maximize Life of the Asset

Water is an excellent heat transfer medium, but it must be properly treated in both steam and hot water systems or problems will ensue robbing the system of energy and reducing the life of the asset.
Multiple Components for a Successful Boiler Water Treatment Program

- Makeup Water Pretreatment
- Internal Treatment
- Monitoring and Control
Make-up Water Pretreatment
Contaminants of Concern

- **Sodium**: Alkaline conditions, Stress corrosion cracking
- **Sulfate**: Acidic conditions, Stress corrosion cracking
- **Chloride**: Acidic conditions, Pitting, general corrosion, denting, stress corrosion cracking
- **Calcium & Magnesium**: Deposits, Under-deposit corrosion
- **Silica**: Deposits, Under-deposit corrosion
- **Corrosion Products**: Deposits, Under-deposit corrosion
- **Dissolved Gases**: Pitting
Ion Exchange Softening

- Removal of Calcium and Magnesium
- Replace with Sodium (operates Na Cycle)

Ion exchange resin is an activated, synthetic, organic, copolymer matrix comprised of porous beads with a typical diameter of 0.01 - 0.04 inch.
Removes hardness in the form of Calcium (Ca^{2+}) and Magnesium (Mg^{2+})

- Also good for Barium removal
- Strong Acid Cation Resin in Sodium Form
Regeneration

- Softening regenerated using sodium chloride (NaCl)
- The strength of the NaCl solution used determines the ion exchange capacity of the unit.
Dealkalization

- Removal of Alkalinity
 - Bicarbonate and Carbonate
- May also remove Sulfate and Nitrate
- Replace with Chloride (operates Cl Cycle)
- Strong Base Anion Resin in Chloride form
- Regenerated with salt (brine) solution
Reverse Osmosis

- Semi-permeable membrane
- Reverse the process of osmosis
- Remove dissolved solids (TDS)
What is Osmosis?

- The transport or diffusion of water across a semipermeable membrane
- Semipermeable - Salt will not pass; water will
- Water passes from the solution of lower concentration to higher concentration.
- Water will rise on the side of the more concentrated solution due to water migration.
- Difference is elevation is the Osmotic Pressure.
- Will continue until differential head stops the flow.

1000 mg/L Salt Solution Semi-permeable Membrane Pure Water
Reversing Osmosis

- Application of pressure so to stop water flow is called OSMOTIC Pressure
- Osmotic Pressure: Generally about 1 PSI per 100 mg/L TDS difference
- Flux is the rate that water permeates through the membrane. (GFD or LMH)
Oxygen Corrosion

- Corrosion potential increases with increasing temperature
- Dissolved oxygen is ~ 10X more corrosive than carbon dioxide
- O_2 removed mechanically and/or chemically

Graph courtesy of: www.engineeringtoolbox.com
Mechanical Deaeration

- Gas solubility in solution decreases as temperature increases and approaches saturation temp
- Sprays and/or trays and/or packed column increase surface area of water
- Increased surface area increases contact with steam reducing solubility of gases and facilitating removal
INTERNAL TREATMENT
Oxygen Scavengers

- O_2 removed mechanically and/or chemically
- Removes trace O_2 left by DA/FW tank
- Reducing agents
- Volatile (900 psig +) & non-volatile (<600 psig) types

<table>
<thead>
<tr>
<th>Volatile</th>
<th>Nonvolatile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrazine N_2H_4</td>
<td>Sodium Sulfite Na_2SO_3</td>
</tr>
<tr>
<td>Carbohydrazide H_6N_4CO</td>
<td>Erythorbic Acid $C_2H_8O_6$</td>
</tr>
<tr>
<td>Diethylhydroxylamine (DEHA)</td>
<td></td>
</tr>
<tr>
<td>Methylethylketoxime (MEKO)</td>
<td></td>
</tr>
</tbody>
</table>
Condensate and Feedwater pH Control: Neutralizing Amines

- Neutralize the acid (H^+) generated by the dissolution of carbon dioxide or other acidic process contaminants in the condensate
- Short chain organic with amine group
- Most common: Morpholine, Cyclohexylamine, Diethylaminoethanol, Dimethlyisopropanolamine, Ammonia
- Differ in cost, consumption rate and distribution ratio
- FDA has limits regarding neutralizing amines (other than ammonia) when steam contacts food or food products
- Ineffective against DO based corrosion
Condensate and Feedwater pH Control: Filming Amines

- Protect against oxygen and carbon dioxide corrosion by replacing the loose oxide scale on metal surfaces with a very thin amine film barrier
- High molecular weight amines or amine salts containing chains of 10 to 18 C atoms
- Most common: Octadecylamine, Hexadecylamine, Dioctadecylamine, Ethoxylated Soya Amine (ESA)
- Most effective applied to clean metal
- Limited acceptance by FDA
- Often blended with neutralizing amine and emulsifiers
- Must be continuously fed
Boiler Treatment: Phosphate Treatment Programs

- One of the oldest treatment programs
- Precipitating chemistry
- Dosed based on hardness – can be used with high hardness FW
- Blowdown and scale formed depends on amount hardness
- Various different programs for different concerns, pressures, and FW purity level
- Controlled by monitoring of pH, PO₄ and blowdown of precipitate
Boiler Treatment: Threshold Scale Inhibitors

- Hybrid programs that combine phosphonate and polymer
- Distorts crystal structure and prevents scale formation
- Low pressure <300 psig
- Firetube boilers
- Better able to handle moderate to severe hardness upsets
Boiler Treatment: All Polymer Programs

- Monomers having carboxylic acid functional groups (polycarboxylates)
- Act as dispersants and weak sequestrants
 - Maintain solubility of Ca, Fe, and Mg
- Limited to <900 psig and 50 COC
- Subject to challenges of thermal degradation
- Can be corrosive if overfed
- Produce very clean heat transfer surfaces
 - No precipitate is formed, blowdown can often be reduced.
Boiler Treatment: Chelant Chemistries

- Depend on sequestration – chelants bind with ions - keep them in soluble state
- Conditions sludge and solubilizes hardness
- Typical chemicals: NTA and EDTA
- Control by measurement of residual chelant – dosed based on amount of hardness
- Predominant reactions take place in FW
- Low to Medium Pressure Units

Most metals have six reactive coordination sites. EDTA can effectively tie into each coordination site and produce a stable complex.
MONITORING AND CONTROL

Knowing where you stand is more than half the battle
ASME Water Chemistry Limits (Water Tube Boilers)

<table>
<thead>
<tr>
<th>Drum Operating Pressure (psig)</th>
<th>0-300</th>
<th>301-450</th>
<th>451-600</th>
<th>601-750</th>
<th>751-900</th>
<th>901-1000</th>
<th>1001-1500</th>
<th>1501-2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved oxygen ppm (mg/L) O₂</td>
<td>< 0.007</td>
<td>< 0.007</td>
<td><0.007</td>
<td><0.007</td>
<td>< 0.007</td>
<td>< 0.007</td>
<td>< 0.007</td>
<td><0.007</td>
</tr>
<tr>
<td>Total iron ppm (mg/L) Fe</td>
<td>≤0.1</td>
<td>≤0.05</td>
<td>≤0.03</td>
<td>≤0.025</td>
<td>≤0.02</td>
<td>≤0.02</td>
<td>≤0.01</td>
<td>≤0.01</td>
</tr>
<tr>
<td>Total copper ppm (mg/L) Cu</td>
<td>≤0.05</td>
<td>≤0.025</td>
<td>≤0.02</td>
<td>≤0.02</td>
<td>≤0.015</td>
<td>≤0.01</td>
<td>≤0.01</td>
<td>≤0.01</td>
</tr>
<tr>
<td>Total hardness ppm (mg/L)</td>
<td>≤0.3</td>
<td>≤0.3</td>
<td>≤0.2</td>
<td>≤0.2</td>
<td>≤0.1</td>
<td>≤0.05</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>pH @ 25°C</td>
<td>8.8-10.5</td>
<td>8.8-10.5</td>
<td>8.8-10.5</td>
<td>8.8-10.0</td>
<td>8.8-10.0</td>
<td>8.8-9.6</td>
<td>8.8-9.6</td>
<td>8.8-9.6</td>
</tr>
<tr>
<td>Chemicals for preboiler system protection</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>VAM</td>
<td>VAM</td>
<td>VAM</td>
</tr>
<tr>
<td>Nonvolatile TOC ppm (mg/L)</td>
<td><1</td>
<td><1</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Oily matter ppm (mg/L)</td>
<td><1</td>
<td><1</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Boiler Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silica ppm (mg/L) SiO₂</td>
<td>≤150</td>
<td>≤90</td>
<td>≤40</td>
<td>≤30</td>
<td>≤20</td>
<td>≤8</td>
<td>≤2</td>
<td>≤1</td>
</tr>
<tr>
<td>Emergency Minimum Boiler Water pH</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total alkalinity ppm (mg/L)</td>
<td><700</td>
<td><600</td>
<td><500</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Specific conductance μmhos/cm (μS/cm) @ 25°C without neutralization</td>
<td>1100</td>
<td>900</td>
<td>800</td>
<td>300</td>
<td>200</td>
<td>200</td>
<td>≤150</td>
<td>≤80</td>
</tr>
</tbody>
</table>

(higher specific conductivity values are allowed carryover tests confirm compliance with required steam purity)
ASME Water Chemistry Limits (Fire Tube Boilers)

Feedwater

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0-300 psig</th>
<th>0-2.07 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved oxygen ppm (mg/l) O₂ - measured before chemical oxygen scavenger addition</td>
<td><0.007</td>
<td></td>
</tr>
<tr>
<td>Total iron ppm (mg/l) Fe</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>Total copper ppm (mg/l) Cu</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>Total hardness ppm (mg/l)</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>pH @ 25°C</td>
<td>8.3-10.5</td>
<td></td>
</tr>
<tr>
<td>Nonvolatile TOC ppm (mg/l) C</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Oily matter ppm (mg/l)</td>
<td><1</td>
<td></td>
</tr>
</tbody>
</table>

Boiler Water

<table>
<thead>
<tr>
<th>Parameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica ppm (mg/l) SiO₂</td>
<td><150</td>
</tr>
<tr>
<td>Total alkalinity ppm (mg/l)</td>
<td><700</td>
</tr>
<tr>
<td>Free OH-alkalinity, ppm (mg/L)</td>
<td>NS</td>
</tr>
<tr>
<td>Specific conductance μmhos/cm (μS/cm) @ 25°C without neutralization</td>
<td>< 7000</td>
</tr>
</tbody>
</table>
Sample Locations

Figure 1, Soft Water Make-Up
Recommended Sample Point Locations
Refer to Table 1 for Details.
Sample Locations

Recommended Sample Point Locations

Refer to Table 2 for Details.

Figure 2, High Purity Make-Up

ASME, 10/19/2002.
See footnotes at bottom of Table 1.
The Value of Condensate can be Substantial

- Value can be broken down into the following:
 - Water cost
 - Sewer cost
 - Fuel cost
 - Chemical cost
 - Pretreatment cost
 - Blowdown cost

- Additional benefits of:
 - Improving FW quality
 - Increasing Cycles
 - Reducing WW

Range $10 to $25 per 1000 gallons of condensate recovered
Types of Condensate Treatment Systems

- Deep Bed Condensate Polishers
- Pre-coat Condensate Polishers
- Condensate Filters
- Chemical Injection
Boiler Cycles and Percent Blowdown

Boiler Feedwater
1,000,000 lbs./day
20 ppm TDS

Boiler Drum
50 Cycles
1000 ppm TDS

Steam
Steam Quality = 0.99
970,000 lbs./day
10 ppm TDS

Boiler Blowdown
3% of Feedwater
30,000 lbs./day
1000 ppm TDS

HEAT
Blowdown Control

Can Save Water and Energy and $:
- Increase 5 to 10 cycles saves 10%
- Increase 20 to 40 cycles saves 2.5%

Savings in:
- Water cost
- Sewer cost
- Fuel cost
- Chemical cost
- Pretreatment cost

Range $10 to $25 per 1000 gallons
Blowdown Control

- Minimizing chemistry swings in the boiler
- Typically based on conductivity
- Starts with good makeup quality
- Monitor and test appropriate parameters relative to treatment program
- Maintain chemical feed dosage rates
- Prevent over-cycling boiler
- Use automation where practical
To Summarize:

Successful Program include 4 parts:

- Minimize contaminants entering system through makeup water pretreatment
- Use best internal treatment program for your system
- Controlling cycles of concentration and recovering condensate can save dollars
- Monitoring is a crucial component of control