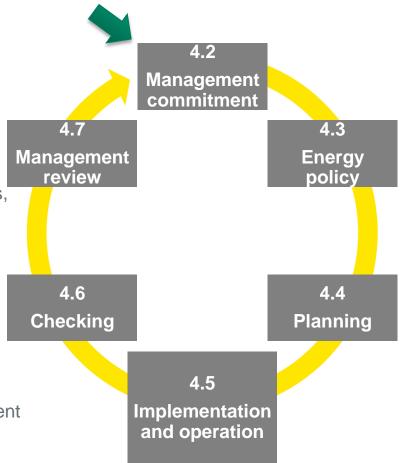
# Using ISO 50001 to drive energy improvements

March 13, 2018 CIBO, Arlington, VA Jim Harried



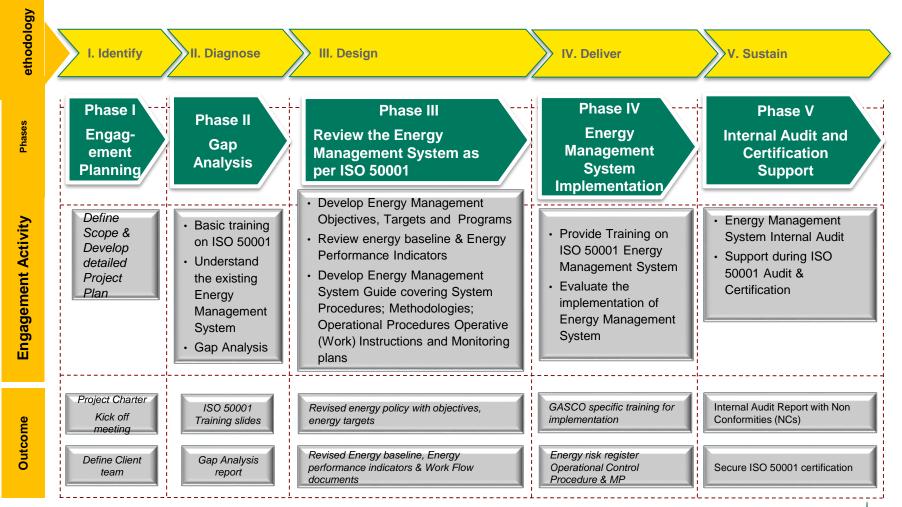
The business of sustainability


#### ISO 50001 energy management system (EnMS)

#### **Benefits**

- Reduce operating costs
- Reduce greenhouse gas (GHG) emissions
- Improve global competitiveness
- Demonstrate commitment to shareholders, customers, employees, neighbors, etc.

The US Department of Energy promotes ISO 50001 for:


- 1. Independent energy sources, reduced energy consumption and increased energy performance
- 2. Set and exceed performance goals for equipment
- 3. Continuous energy improvement via energy plans, monitoring and corrective actions
- 4. Better integrate energy saving design and procurement practices for energy-using equipment, systems and processes





## ISO 50001 implementation methodology

This approach delivers a practical, energy management system integrated into plant operations to drive continuous cost savings and process improvements





## Abbreviated list of US Companies with ISO 50001 and (mostly with) USDOE Superior Energy Performance (SEP)

| IC | iosily with) USDUE Superior Energy Performance (SEP) |                                   |  |  |  |
|----|------------------------------------------------------|-----------------------------------|--|--|--|
|    | 3M                                                   | IBM North America                 |  |  |  |
|    | AllSteel                                             | JW Marriott Hotel                 |  |  |  |
|    | Bosch Rexroth Corporation                            | Keihin Carolina System Technology |  |  |  |
|    | Bridgestone                                          | Land O'Lakes, Inc.                |  |  |  |
|    | CCP Composites                                       | Mack Trucks                       |  |  |  |
|    | Cummins                                              | MedImmune                         |  |  |  |
|    | Curtiss-Wright Electro-Mechanical                    | Nissan                            |  |  |  |
|    | Corporation                                          | Nissan Initial                    |  |  |  |
|    | Detroit Diesel                                       | Nissan Recertification            |  |  |  |
|    | Fiat Chrysler Automotive                             | Schneider Electric                |  |  |  |
|    | Freescale Semiconductor                              | Subaru of Indiana                 |  |  |  |
|    | General Dynamics                                     | Vermont Marine Bunkering          |  |  |  |
|    | Harbec                                               | Volvo Trucks                      |  |  |  |
|    | Hilton Worldwide                                     |                                   |  |  |  |
|    |                                                      |                                   |  |  |  |

ER

#### ISO 50001 logic flow (page 1 of 3)

Focus on minimizing the number of self-defined significant energy uses in the bottom row (to get started with)

| <u>Clause</u><br>4.4.4 Energy baseline                                                                                                                                                           | <u>Scope</u><br>All energy using equipment                                                                                                         | <u>Typical</u><br><u>scale</u><br>Hundreds of<br>items |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 4.4.5 Energy performance<br>indicators                                                                                                                                                           | All energy uses that an organization wants to monitor                                                                                              | 3-20 KPIs                                              |
| 4.4.6 Energy objectives, targets and management action plans                                                                                                                                     | Focus on improvement projects that save money, make operational improvements                                                                       | 3-5 items                                              |
| 4.4.3 (b) <b>Significant energy use</b><br>(SEU) - "energy use accounting for<br>substantial energy consumption<br>and/or offering considerable potential<br>for energy performance improvement" | Focus on a few items that need<br>improvement; self-defined, subjective<br>may not be significant to others<br>For each SEU, six more clauses appl |                                                        |
|                                                                                                                                                                                                  |                                                                                                                                                    |                                                        |



4.4.6 - Objectives and targets - consider all SEUs when setting O&Ts

4.5.2 - Train / pre-qualify all employees and contractors re control of each SEU

4.5.5 - **Operational control** - control operations and maintenance activities related to its SEUs ... to ensure that they are carried out under specified conditions:

- a) Set operating and maintenance criteria for each SEU
- b) Operate and maintain equipment per operational criteria for each SEU
- c) Communicate the operational controls to operators and contractors



4.5.6 - **Design** - consider energy performance improvement opportunities and operational control in the design of new, modified and renovated facilities, equipment, systems and processes related to each SEU

#### 4.5.7 - Procurement -

- (a) inform suppliers related to SEUs that procurement is partly evaluated on the basis of energy performance
- (b) set criteria for assessing energy use, consumption and efficiency over the expected operating lifetime when procuring energy and for items related to SEUs
- (c) set energy purchasing specifications for effective energy use
- 4.6.1. Monitoring monitor, measure and analyze the key characteristics including
  - (a) SEUs
  - (b) the relevant variables related to SEUs
  - (c) EnPls
  - (d) the effectiveness of the action plans in achieving objectives and targets
  - (e) evaluation of actual versus expected energy consumption



#### Energy savings at office examples



30% Energy saving due to implementing ISO 50001
81% Recycling (by weight) of total waste achieved concurrently
26% Saving in water consumption achieved concurrently



#### Energy savings at office examples (continued)

| No | Energy saving project                                                                     | Savings/year |
|----|-------------------------------------------------------------------------------------------|--------------|
| 1  | Replaced electric hot water heaters with one central solar hot water system (70% savings) | \$42,155     |
| 2  | Installed three solar photovoltaic systems                                                | \$45,789     |
| 3  | Automatic control of lights (20% savings)                                                 | \$40,702     |
| 4  | Evaporative coolers on chillers (20% savings)                                             | \$128,956    |
| 5  | Variable flow chilled water system (25% savings)                                          | \$55,238     |
| 6  | Heat recovery system on boilers (30% savings)                                             | \$55,000     |
| 7  | Fresh air handling unit (AHU) control (40% savings)                                       | \$11,048     |
| 8  | VFD control on AHU motors when unoccupied (40% savings)                                   | \$49,890     |
| 9  | Temperature control through occupancy sensors (10% savings)                               | \$10,571     |
|    | Total savings                                                                             | \$439,349    |
|    | Capital cost of these improvements                                                        | \$2,196,745  |
|    | Payout period                                                                             | 5 years      |



## Energy savings at gas plant examples

- Gas turbine exhaust gas heat recovery/combined cycle/boiler feedwater pre-heat to improve thermal efficiency from 25% – 30% to 55% – 60%
- Gas turbine automatic process control retrofit reduce gas consumption by >3%
- 3. Switchgear replacement network upgrade for 11kV switchgear
- 4. Variable speed drives on electric motors
- 5. Re-lamping production areas and offices
- 6. CEMs for gas turbines to optimize turbine performance and reduce GHG emissions







