Advanced Manufacturing Office Trends in CHP

Bob Gemmer AMO CHP Team, Technical Partnerships June 8, 2021

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

DOE Priorities: Deploying the Clean Energy Revolution

BIDEN ADMINISTRATION CLIMATE GOALS

A carbon pollution-free power sector by 2035 Net-zero emissions by 2050

Make basic science breakthroughs

Turn that science into deployable technologies

Fund deployment of clean energy technologies

• CREATE GOOD-PAYING JOBS

associated with the fast-growing global market for products that reduce carbon emissions

- COMMIT TO RACIAL JUSTICE and target disadvantaged communities for new clean energy investments, jobs, and businesses
- ENCOURAGE ROBUST COLLABORATION across the federal government, the fifty states, and the private sector

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Industrial Organization Network (ION)

Goal:

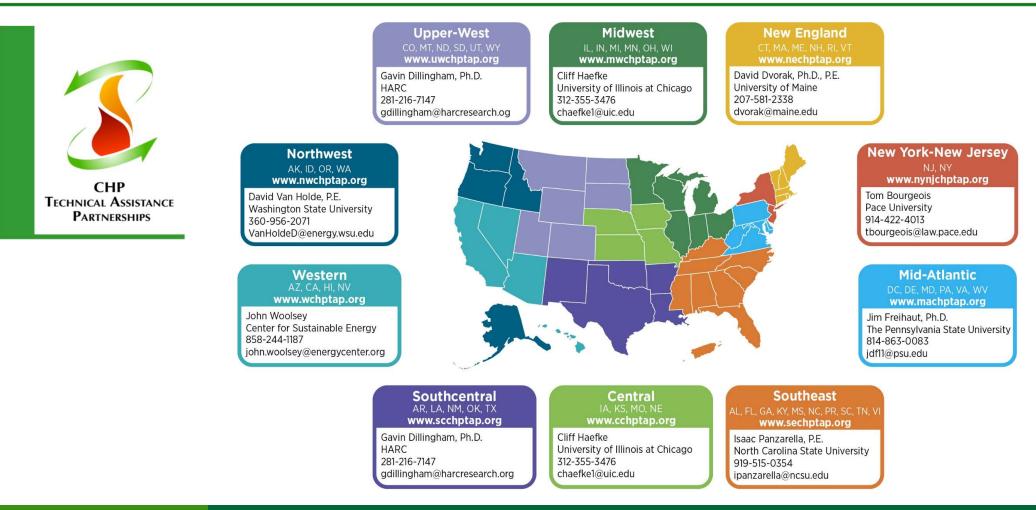
- A program that promotes deeper engagement between AMO and nonmanufacturing industrial community
- Open to trade associations, NGOs, vendors, utilities
- Partners inform AMO Technical Partnership programs and receive recognition

CHP TAPs: Current Engagement

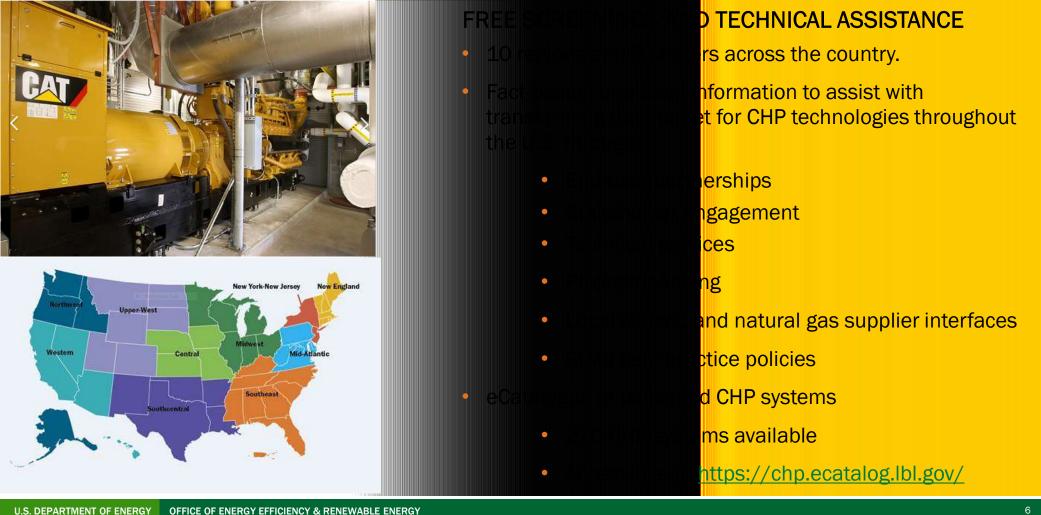
Program Activities

- Deliver trainings to stakeholder groups and associations
- Participate in end-user networks and organization events
- All activities are tracked and recorded by CHP TAPs
- Packaged CHP Accelerator has 12 utility partners

Target Audience

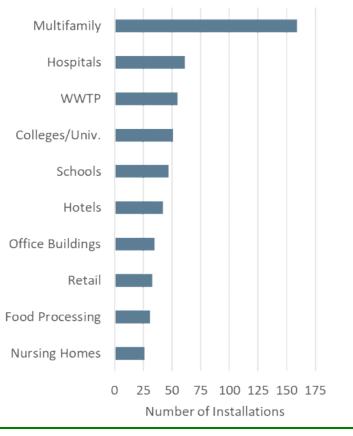

• Utilities, SEOs, and regional trade associations

Benefits


- Increased awareness of CHP TAP resources and TA opportunities
- Networking with companies and organizations interested in CHP
- Higher adoption of CHP across different sectors

CHP TAP Stakeholder Activities (FY19-20)	Total
Engineer/Developer Education	26
Interconnection	2
Legislation	20
Permitting	5
Portfolio Standard	7
Resiliency	21
Standby Rates	9
State Energy Plan	65
Utility CHP Program	30
Utility Ownership	3
Other	37
Total	225

DOE CHP Technical Assistance Partnerships



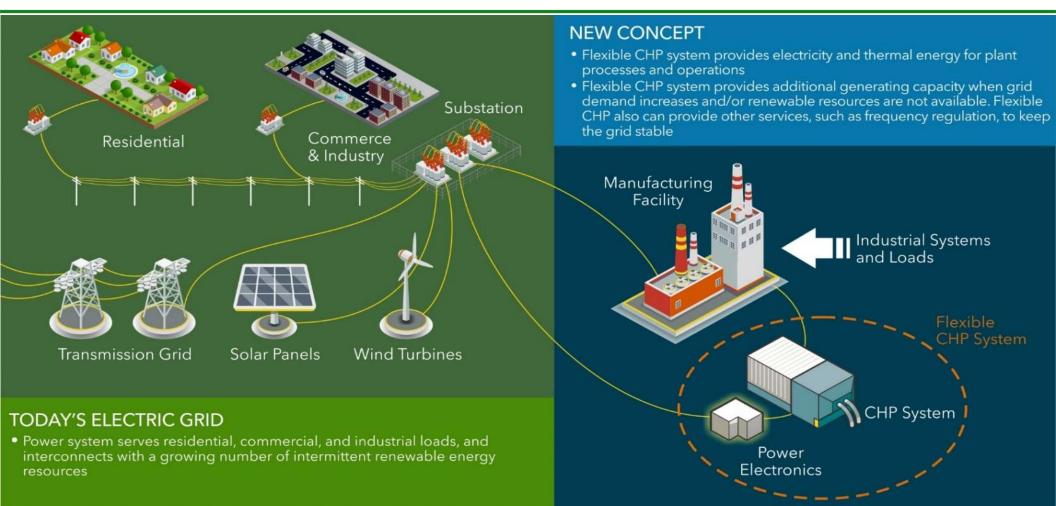
CHP Technical Assistance Partnerships Highlights:

CHP Market Trends – The Last Five Years

- Growing activity in non-traditional CHP markets (light industrial, commercial, institutional, multi-family) 88% of installs
- Move toward smaller CHP installations recip engines and microturbines make up 77% of installs
- Increase in packaged CHP system offerings
- Natural gas continues to be the dominant fuel 67% of new capacity
- Renewable fuels increasing 12% of new projects
- Resilience a key driver in critical infrastructure applications and microgrids
- Increasing interest in hybrid systems that integrate CHP with renewables and energy storage
- Growing push back on natural gas CHP

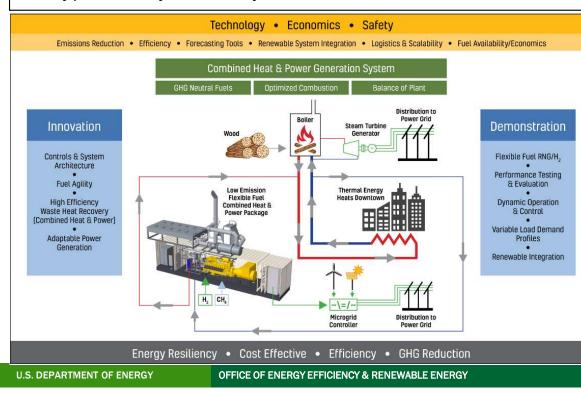


Top CHP Applications 2015-2019


Source: DOE CHP Installation Database (U.S. installations as of August

Flexible Combined Heat and Power Systems: Decarbonization

- Decarbonization is a major policy topic in many states and cities
 - Aggressive CO₂/greenhouse (GHG) reductions of 40% by 2030 and 80% by 2050
 - Focus on economy-wide electrification to get to net zero carbon
- Major push against natural gas in some areas
 - Over 20 cities in California and others in the Northeast have banned natural gas in new construction
 - Efforts to stop investment in natural gas infrastructure
 - Pipelines
 - Natural gas CHP


Flexible Combined Heat and Power Systems

Flexible Combined Heat and Power Systems: Caterpillar Example

Technology Summary

Caterpillar Inc. has teamed with The National Renewable Energy Laboratory and District Energy St. Paul to demonstrate a 2MW flexible natural gas/hydrogen combined heat and power (CHP) system at a municipal generating station. The project team brings together technical experts in combustion, engine design, hydrogen chemistry, energy conversion, and system integration with a leader in renewable energy for municipal CHP to develop and demonstrate a unique-to-the-industry power delivery and control system.

Key Personnel

Dr. David Todd Montgomery – Caterpillar Michael Peters – National Renewable Energy Lab Michael Burns – District Energy St. Paul

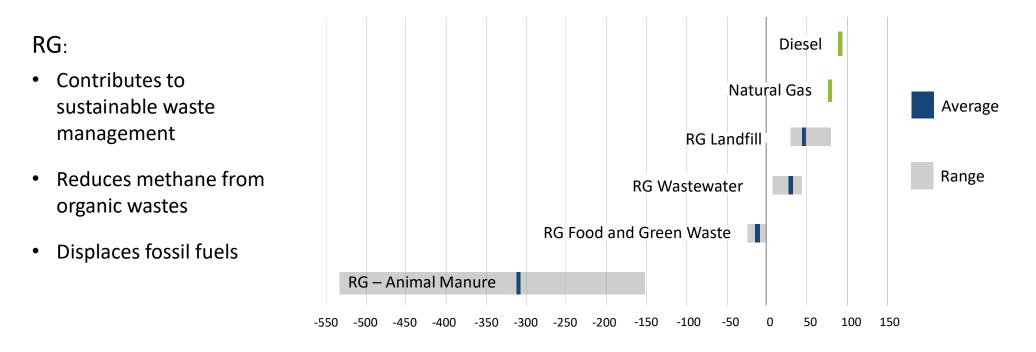
Program Summary

Period of performance:	Cost-share:	\$7.16m
36 months	Total budget:	\$11.71m

Federal funds: \$4.55m

	Key Milestones & Deliverables	
Year 1	 Complete requirements documentation Complete subsystem sizing and specification 	
Year 2	Complete system layout and designComplete bill of material	
Year 3	System commissioning completeFinal Report	

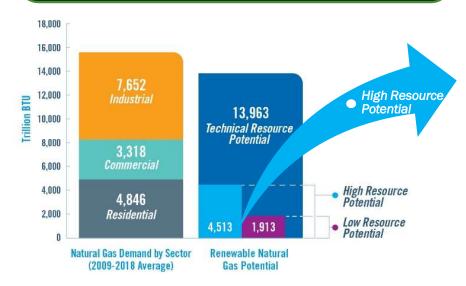
Technology Impact

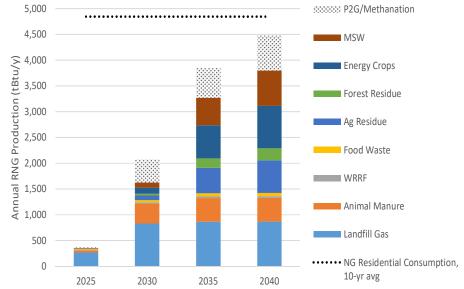

Caterpillar is a world leader in electric power products including engines, switchgear, and battery systems. This program will seed effort in adding natural gas/hydrogen flexible fuel CHP systems to the wide options space for stationary power applications.

10

RG Technologies and Feedstocks

Carbon Intensities of RG Feedstocks

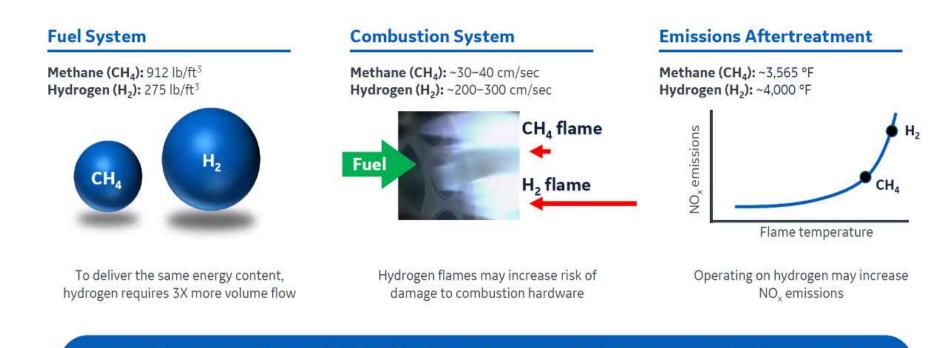



Carbon Intensity (g CO2e/MJ) – Current Low Carbon Fuel Standard Pathways

Source: WRI, Renewable Natural Gas As A Climate Strategy: Guidance For State Policymakers, 2021

RG Resource Potential

- High resource case: 4.5 Tcf of RG by 2040
- Represents 60% of industrial use of natural gas
- Cost competitive with other emission reduction strategies, \$55-300/ton of GHG emission reductions



Source: AGA Foundation, Renewable Sources of Natural Gas: Supply and Emissions Reduction Assessment, 2019

Use of Hydrogen (H2) as a Fuel will Require System Changes

Use of hydrogen as a gas turbine fuel requires system changes

Operating a gas turbine on blends of hydrogen or on 100% hydrogen may require changes to key power plant systems, but this has been successfully demonstrated

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

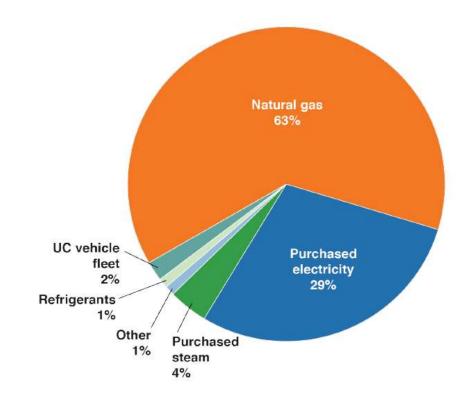
14

Case Study: California's Self Generation Incentive Program

- State program to provide incentives for distributed generation projects to reduce peak energy demand.
- All gas generation technologies are required to blend a minimum amount of renewable fuel beginning in 2017.
- All projects applying after 2020 must use 100% renewable fuel.
- Generation projects earn \$2.00/W + \$0.60/W biogas adder.

Application Year	% Renewable Fuel Required
2016	0%
2017	10%
2018	25%
2019	50%
2020	100%

Table 6.5.1: Minimum Renewable Fuel Blending Requirement

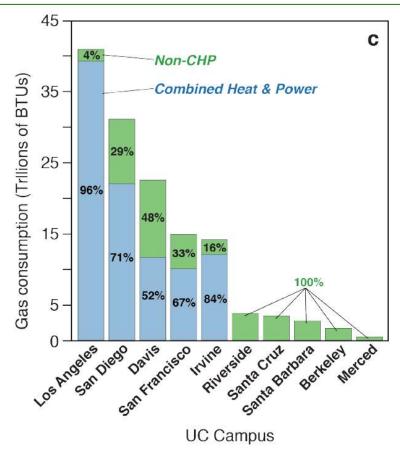

Self-Generation Incentive Program HANDBOOK, October 2, 2020, V.9. Table 6.5.1: Minimum Renewable Fuel Blending Requirement

Additional Incentives to Consider

- Renewable Electricity Production Tax Credit (PTC). Option to claim Investment Tax Credit (ITC) in lieu of claiming PTC.
- Bioenergy Market Adjusting Tariff (BioMAT) February 1, 2021 Prices:
 - ➤ Category 1 (WWTP) \$0.128/kWh
 - Category 2 (Dairy) \$0.188/kWh
- Low Carbon Fuel Standard
- Fuel Cells are NEM Eligible, but awaiting final CPUC decision

University of California GHG Emission Sources

- The UC System consists of:
 - 10 campuses
 - 5 medical centers
 - 3 national labs
- CHP at 7 campuses
- On-campus combustion of natural gas is primary decarbonization challenge



Source: University of California Strategies for Decarbonization: Replacing Natural Gas; TomKat Natural Gas Exist Strategies Working Group Report to the TomKat Foundation, February 2018

UC Natural Gas Consumption by CHP and Non-CHP Use

Note: Two campuses have CHP that are not reflected in the chart:

- UC Berkeley's CHP plant was owned & operated outside the UC system until 2017
- UC Santa Cruz's plant came online in 2016

Project Snapshot: UCSD Microgrid

University of California San Diego San Diego, CA Application/Industry: University Campus Capacity: 35.2 MW Prime Mover: Two 13.5 MW gas turbines, 3 MW steam turbine, 2.8 MW fuel cell. Solar PV: 2.4 MW array Fuel Type: Natural gas for CHP / directed biogas for fuel cell. Thermal Use: Domestic hot water, cooling water and electricity production. Installation Year: 2001 for gas turbine, 2011 for the fuel cell.

<image>

University of California, San Diego (fuel cell installed in microgrid) SOURCE: UCSD Triton Magazine

Highlights:

- Trilogy has a Biogas Purification Plant at the City of San Diego Point Loma Wastewater Treatment Plant.
- 1.6 Million SCF/day of digester biogas is processed for injection into SDG&E natural gas pipeline and nominated to BioFuel Energy's fuel cells at UCSD and to San Diego South Bay Water Reclamation Plant.
- Fuel cell recovered heat used to drive a 350-ton absorption chiller for campus cooling.

Summary

- CHP is the most efficient way to generate power with any fuel
- CHP's high efficiency provides carbon reduction today.
- CHP systems can be fueled by a variety of fuels including green hydrogen and renewable gas.
- CHP's efficiency and resilience advantages will remain as RG and hydrogen use increase

The U.S. DOE CHP Technical Assistance Partnerships are available to:

- Provide screenings for technical and economic feasibility
- Provide third party reviews
- Provide technical assistance along the project path

20

Questions?

For More Information:

Bob Gemmer

bob.gemmer@ee.doe.gov 202-586-5885 (desk) 202-251-8928 (cell)