

Water Resource Management and Sustainability

Kevin Boudreaux ChemTreat Tech Staff 214-733-7585 kevinb@chemtreat.com

Outline

- What is sustainability?
- Key drivers of water sustainability
 - Water availability & costs
 - Environmental limitations
 - Air permits
- Water resource management
 - Water discharge options
 - Reduce Reuse Recycle
 - Zero Liquid Discharge (ZLD) overview
- Questions

- Corporate Sustainability is a business approach that creates long-term shareholder value by embracing opportunities and managing risks deriving from economic, environmental and social developments.
- Sustainable business practices are critical to the creation of long-term profitability and shareholder value in an increasingly resource-constrained world.
- Sustainability factors represent opportunities and risks that competitive companies must address.

Water impacts corporate economic, environmental, and social goals.

What's Driving Water Sustainability?

- Supply, Demand, and Quality of water resources
 - Increasing population (Water, Agriculture, Livestock)
 - Climate change or not?
 - Global industrial segment growth
- \$ Increasing water and sewer costs
 - The price of water is increasing Over the past 10 years, municipal water rates have increased by an average of 27% in the United States, 45% in Australia, 50% in South Africa, and 58% in Canada.
- \$ Environmental compliance costs
 - NPDES effluent, sludge treatment requirements, air permits (PM 10)
- Political
 - Competition between users Reduce both consumptive and intake requirements
- Image
 - "Green", Recycle, Reuse, LEED certification, NPDES Violations

USGS Drought Map Comparison

	Explan	ation -	Percent	ile class	ses	
Low	<10	10-24	25-75	76-90	>90	High
	Much below normal	Below normal	Normal	Above normal	Much above normal	High

US Geological Services Data 2017

Water Cost Survey – Polling the Field

Geography	\$\$\$/1000gals**
Michigan Area	\$10.50 MU+WW
Georgetown, KY	\$5.00 MU only
Chicago, IL	\$7.90 MU+WW
Iowa Area	\$13.00 MU+WW
West Virginia Area	\$7.50 MU+WW
Southern Texas	\$11.00 MU+WW
Maryland Area	\$20.00 MU+WW
Lima, OH	\$5.00 MU (w/10% annual increase)
Casa Grande, AZ	\$2.27 MU+WW
Altavista, VA	\$4.50 MU+WW
Columbus, OH	\$8.00 MU+WW
Colorado Area	\$9.00 MU+WW
Charleston, WV	\$12.75 MU+WW
Detroit, MI	\$11.00 MU+WW
North Carolina Area	\$10.00 MU+WW
Kentucky Area	\$6.80 MU+WW
Wichita, KS	\$6.17 MU+WW
Front Royal, VA	\$35.00 MU+WW
Northern KS	\$8.50 MU+WW

© 2016 ChemTreat, Inc. **Geography given as reference only. Entities pay different prices based on agreements with municipalities.

US Water Cost Trends

	2008		2	012	2016		
Avg Water Rates:	\$	2.44	\$	3.02	\$	3.38	
% Increase:			2	24%		12% 39%	
Avg W/W Rates: % Increase:	\$	3.82	\$ 1	4.26 L2%	\$	4.73 11% 24%	
Avg Total Rates: % Increase:	\$	6.26	\$ 1	7.28 16%	\$	8.11 11% 30%	

*\$\$/kgal

Water and Wastewater Annual Price Escalation Rates for Selected Cities across the United States, September 2017, U.S. Department of Energy, Office of Effeciency & Renewable Energy

Some Causes of H2O Cost Increase

- Aging Water Infrastructure Infrastructure Report Card, issued by the American Society of Civil Engineers (ASCE):
 - Dams: D
 - Drinking water: D
 - Wastewater: D+
- Inflation/Increase in Operations
 - Inflation
 - Rising costs of electricity, chemicals, materials and equipment
 - Rising construction costs associated with replacing or upgrading aging utilities infrastructure
 - New regional, state and federal regulatory requirements for upgraded treatment processes also increase utility costs

Environmental Regulation Pressure

- Metals, O&G, TSS, Temperature, Toxicity
- Nutrient pollution from P and N
 - One of top causes of water quality degradation
 - Algal blooms, oxygen deficiency, decline in wildlife habitat
 - Rapidly Increasing Regulations

Cause of Impairment Group Name	Number of Causes of Impairment
Pathogens	9,743
Mercury	8.823
Metals (other than Mercury)	7.149
Nutrients	7.016
Sediment	6,583
Polychlorinated Biphenyls (PCBs)	6.08 <u>3</u>
Organic Enrichment/Oxygen Depletion	5,763
pH/Acidity/Caustic Conditions	3.737
Turbidity	3.050
Temperature	3.044
Cause Unknown - Impaired Biota	3.039
Salinity/Total Dissolved Solids/Chlorides/Sulfates	1,626
Pesticides	1.598

© 2016 ChemTreat, Inc.

Confidential – Do Not Duplicate

Source: USEPA http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T#causes_303d

Regulating Nutrients

Total Maximum Daily Load (TMDL)

- Total input of each pollutant to a stream or watershed
- TMDL includes
 - Loading capacity calculation
 - Point Source contributions Waste Load Allocation (WLA)
 - Non-Point Source contributions Load Allocation (LA)
 - Margin of Safety (MOS)
- Incorporates a credit trading model

Confidential – Do Not Duplicate

Water Resource Management

Reduce

Reduce – Optimize Processes

- Operations and maintenance
- Keep Closed-Loops closed
 - Group Question : What are typical/acceptable closed loop losses
 - Heat exchangers, valves, pump seals, cross connects, wash down
- Steam Trap Surveys
- Utilize Low TDS and Nutrient loading chemicals
- Control CT COCs

Reduce – Operations and Maintenance

Confidential – Do Not Duplicate

Reduce - Low TDS & Nutrient Loading Chemicals

- Impact of bleach....
- Phosphorus.....
- Acid/caustic.....

So which chemistries are you currently using that could be substituted?

Reduce - Water Usage via Increasing CT COCs

What Limits Your Cooling Water Chemistry?

- pH Increases with cycles may require acid feed
- Chloride (corrosive)
- Hardness Scaling index
- Silica and iron in makeup
- Cooling tower design
 - Fill type
 - Uncovered distribution deck
 - Materials of construction (galvanized)
- Metallurgy
 - Stainless steel Chlorides
 - Brasses Ammonia
- Discharge limits
 - Total dissolved solids
 - Phosphate
 - Metals
- Heat exchanger or Process design
 - High skin temperature
 - Low flow

- PM-10/PM-2.5 becoming much more prevalent
 - Drift droplets contain same chemical impurities as recirc water
 - Particulate matter may be classified as an emission
- Magnitude of the drift loss influenced by the number and size of droplets which are determined by:
 - Tower fill design
 - Tower design
 - Air and water patterns
 - Design of the drift eliminators
- As an emission, regulated by EPA:
 - Lbs/yr (t/yr)
 - Limits COCs in CT by limiting lbs carried in recirc at any given time (translates to lower conductivity set point)
 - Increases MU and BD

Monkey-Wrench in Increasing COCs

- EPA's AP-42 is methodology for calculating
- Many problems with this method
- For example:

Heat Treat COOLING TOWER

2 cells with 3,000 gallons per minute. Estimated TDS concentration of 500 ppm. Drift loss rate of 0.005%. What is wrong with this calc?

 $\underline{PM/PM_{10}} (3,000 \text{ gals/min})(500/1,000,000)(8.345 \text{ lbs/gal})(0.00005)(60) = 0.038 \text{ lb/hr} \\ (0.038 \text{ lb/hr})(8760 \text{ hrs/yr})(1 \text{ ton}/2000 \text{ lbs}) = 0.164 \text{ tpy}$

Flaw #1-TDS Measurements

- How are we calculating TDS?
 - Typically don't measure directly
 - Usually use Conductivity as surrogate (65% as TDS)
- Is this accurate?
- Does it depend on the conductivity contribution of each species?

Pre Column (1ppm)	Conductivity (umhos)
CaCl ₂	2.44
MgCl ₂	2.71
NaCl	2.16
CaSO 4	2.04
MgSO ₄	2.21
Na_2SO_4	1.83
NaOH	6.39
NH ₄ OH	7.78
CaCO ₃	2.57
Na_3PO_4	2.17
Na ₂ HPO ₄	5.13
NaH ₂ PO ₄	8.56

Flaw #2 – Calculating Drift Rate

- What drift rate are we using?
 - 0.0005%?
 - 0.02%?
- If unknown, some say to use
 0.02%
- This can make a dramatic impact on overall solids *emission*

Difference		39 x
Drift Solids lbs/	yr 2,630	105,204
Drift Solids Ibs/	hr 0.30	12.01
Drift mmlbs/hr	0.0001251	0.005004
Drift gpm	0.25	10
CT TDS ppm	2,400	2,400
COCs	8.0	8.0
MU TDS ppm	300	300
Evap gpm	638	638
Delta T f	15	15
RR gpm	50,000	50,000
Drift %	0.0005%	0.02%
	Case #1	Case #2

Flaw #3 (but considered Best Practice) – Calculating Actual Solids

Estimating Particle Size Distribution of PM_{TOTAL}

The equation for determining particle size/diameter (dp), in microns is:

$$d_{p} = \underline{d_{d}}_{(\rho_{salt} / \rho_{w} C_{TDS})^{1/3}}$$

Flaw #3 (but considered Best Practice) – Calculating Actual Solids

Figure 1: Percentage of Drift PM that Evaporates to PM10

Flaw #3 (but considered Best Practice) – Calculating Actual Solids

PM-10/2.5 Practical Application

• So who cares? What does it mean to the plant?

	Original No	New w/	(
	Adjustment	Adjustment		Reduces BD hv 44%
Drift %	0.0050%	0.0050%		
RR gpm	50,000	50,000		and MU by 17%!!!
Delta T f	15	15		
Evap gpm	638	638		
COCs	2.6	3.8		
BD gpm	401	225		
MU gpm	1,038	863		
MU TDS ppm	300	300		
CT TDS ppm	777	1,149		
Drift gpm	2.5	2.5		
PM10 Drift mmlbs/hr	0.00125	0.00085		
PM10 Drift Solids lbs/hr	0.97	0.97		
PM10 Drift Solids lbs/yr	8,515	8,525		

**assuming 8,500 lbs/yr limit

Re-Use

Low Cost Solution: <u>Higher Risk</u>

Re-Use at the User – Rejects/BDs to CT

Re-Use at the User – AHU Condensate Recovery

©2012 Chem-Aqua, Inc.

Re-Use on the Front-End – Different MU Sources

- Many alternative water sources can be used successfully with proper pretreatment
- Determine the chemistry, avg., min, max.
 - Specify the water quality in the contract!
- Determine the quantity available
- Evaluate system constraints
 - Stainless steels chlorides
 - Copper alloys ammonia
 - Carbon steel corrosion
 - Plastic fill organics, fibrous materials, biofouling
 - Temperatures scaling
 - Heat exchanger type (plate and frame, tube diameter)
- Evaluate impact on discharge constraints
 - BOD, COD, ammonia, metals, priority pollutants,
 - sulfates, chlorides, phosphate, etc.

Potential Plant Water Sources

- Well water
- Lake water
 - Storm or Runoff Ponds
- River water
- Desalination water
 - Grey water
 - Municipal effluent
 - Industrial process water

Decreasing Quality

- Industrial effluent
- Saline water
 - Brackish water
 - Sea water

Municipal Grey Water an Underutilized Resource

Advantages

- Lower cost, or free
 - Once you build the pipeline
- Reduces effluent discharge to receiving stream
- Lower salinity than many alternate sources
- Already treated
 - Low TSS
 - Chlorine residual
 - But, how well???

Challenges

- Long term variability in quality
 - Industrial process and treatment can change
- High organics
 - Nutrient for microorganisms
 - Increased chlorine demand
- High phosphate
 - Calcium phosphate deposition
 - Effluent nutrient
- Airborne pathogens
 - Legionella
 - Coliforms
- Ammonia
 - Chlorine demand
 - Nitrifying bacteria

Recycle

Low Risk Solution: <u>High Cost</u>

Recycle Treatments

- Clarification
- Filtration
- Membrane Solutions
- Zero Liquid Discharge the ultimate in Recycle/Reuse

A wide variety of treatments available –

Campuses typically don't have all of these processes, but all are viable processes for any type of plant

ZLD Processes

- 5 Basic Processes
 - 1. Initial Concentration
 - 2. Hardness/Silica Removal or Stabilization
 - 3. Intermediate Concentration
 - 4. Final Concentration
 - 5. Solid Waste Production
- Processes may overlap or be eliminated entirely

How ZLD(ish) do you need to be?

ZLD Processes

- Cost of concentration generally proportional to TDS in concentrated streams
 - essentially free in cooling tower
 - As high as \$40/gal in final step
- Volume of water to be concentrated lowers with each step of the process
- Designs focus on moving evaporation to the "front end" (less expensive)

- Occurs in cooling tower or demin system
- Level of concentration obtainable depends on the incoming makeup water quality and its propensity to form scale
- Typically, makeup water can be concentrated from 3-10 times, raising TDS to 2500-8000 ppm
- Water high in scale-forming dissolved solids can be concentrated only a few times prior to being removed from the system via blowdown. Water low in scale-forming dissolved solids may be concentrated ten or more times prior to removal through blowdown

#1: Initial Concentration

- "Front-end" removal of scale-forming minerals a good option to maximize initial concentration
- Initial concentration is least expensive and should be maximized

© 2016 ChemTreat, Inc. Confidential – Do Not Duplicate

#2: Hardness/Silica Removal

- Goal is to replace less soluble species with more soluble species
- Can be accomplished after initial concentration (tower blowdown softening) or before initial concentration (make-up softening)
- Front-end softening usually most economical

#3: Intermediate Concentration

- Utilizes RO to further concentrate TDS
- Limited by level of insoluble species in RO reject
- RO permeate reused, reject goes to Final Concentration
- Allows smaller Final Concentration equipment
- Typically raises TDS to the 20,000-60,000 ppm range

#4: Final Concentration

- Three Options (in various combinations)
 - Brine Concentrator
 - Crystallizer
 - Evaporation Ponds
- Uses thermal energy to evaporate incoming water
- Concentrated slurry sent to Solid Waste Production
- Focus shifts from TDS to TS (Total Solids), combination of TSS and TDS
- Can typically raise waste stream TS to the 150,000 to 500,000 range

Typical Brine Concentrator

#5: Solid Waste Production

- Transforms concentrated brine into a damp solid
- Requires various combination of
 - Solar evaporation ponds
 - Filter presses
 - Centrifuges
 - Dryers
- Solid waste eventually hauled offsite

Manage Benefit vs. Cost and Risk

Successful Management Starts w/ a Good Water Balance

Successful Management Starts w/ a Good Water Balance – Know Your Makeup Water

	City Makeup
рН	8.37
Conductivity, μmho	340
"M" Alkalinity, as CaCO3, mg/L	82
Calcium Hardness, as CaCO3, mg/L	2.6
Magnesium Hardness, as CaCO3, mg/L	1.3
Iron, as Fe, mg/L	0.01
Copper, as Cu, mg/L	0.03
Zinc, as Zn, mg/L	0
Sodium, as Na, mg/L	69
Potassium, as K, mg/L	0.25
Chloride, as Cl, mg/L	19
Sulfate, as SO4, mg/L	53
Nitrate, as NO3, mg/L	3.3
Ortho-Phosphate, as PO4, mg/L	0.69
Silica, as SiO2, mg/L	5.5
Total Organic Carbon, mg/L	
Turbidity, as NTU	
Total Suspended Solids, mg/L	
Total Dissolved Solids, by wt, mg/L	
Estimated TDS, mg/l	

Successful Management Starts w/ a Good Water Balance – Know Your Systems

		CT 1/2	СТ 3/4/5	СТ 6/7/8	СТ 9/10/11/12	HRSG 1	HRSG 2	Aux Boiler 1	Aux Boiler 2	RO Reject	Total
MU Flow Rate gpm	1	340.0	340.0	340.0	340.0					300.0	1660
BD Flow Rate gpm		85.0	85.0	85.0	85.0	4.9	4.9	6.1	6.1	100.0	462
% Water Wastag BD as % of Total pH					CT 1/2	CT 3/	4/5	СТ 6/7/8	СТ 9/10/11,	/12 %	28% 100%
Conductivity, µm	MU Flow Rate	gpm			340.0	340	.0	340.0	340.0) ?0	1222
"M" Alkalinity, as Calcium Hardnes:	BD Flow Rate g	gpm			85.0	85.	0	85.0	85.0	6	295 9
Magnesium Hara Iron, as Fe, mg/L Copper, as Cu, m <u>i</u>	% Water Wast BD as % of Tot	oge al Flow			18%	189	%	18%	18%		5 0 0
Zinc, as Zn, mg/L Sodium, as Na, m Potassium, as K, I	pΗ Conductivity, μ	mho			1360	136	50	1360	1360) 7	0 248 1
Chloride, as Cl, m	"M" Alkalinity,	as CaCOB	3, mg/L		328	32	8	328	328	,	68
Sulfate, as SO4, r Nitrate, as NO3, i	Calcium Hardn	ess, as Ca	ICO3, mg/l	Ľ	10	10)	10	10	9)	190 12
Ortho-Phosphate	Magnesium Ha	ardness, a	s CaCO3, i	mg/L	5	5		5	5		2
Silica, as SiO2, my,	13) L	22	22	22	22	U.1	U. 1	U. 1	U.1	1/	20
Total Organic Carbo	on, mg/L	0	0	0	0	0.0	0.0	0.0	0.0	0	0
Turbidity, as NTU		0	0	0	0	0.0	0.0	0.0	0.0	0	0
Total Suspended Sc	olids, mg/L	0	0	0	0	0.0	0.0	0.0	0.0	0	0
Total Dissolved Solids, by wt, mg/L 0 0		0	0	0.0	0.0	0.0	0.0	0	0		
Estimated TDS, mg/l 884 884 884		884	884	4.4	4.4	4.4	4.4	663	794		

Successful Management Starts w/ a Good Water Balance – Target Your Savings

Questions and Discussion