

ffice of NERGY EFFICIENCY & ENEWABLE ENERGY

Advanced Manufacturing Office

ecuring a Decarbonized Future

ob Gemmer, CHP Program Lead

larch 9, 2022

OE Priorities: Catalyze Economy-Wide ecarbonization

BIDEN MINISTRATION MATE GOALS

A carbon pollution-free power sector by 2035 Net-zero emissions by 2050

Make basic and applied research breakthroughs

Turn that research into deployable technologies Catalyze deploymer of clean energy and decarbonization tec

CREATE GOOD-PAYING JOBS associated with the fast growing global market for products that reduce carbon emissions PURSUE ENVIRONMENAL AND ENERGY JUSTICE and target disadvantaged communities for new clean energy investments, jobs, and business COLLABORATE ROBUSTLY across the federal government, the fifty states, and the private sector

ADGE BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

arbonization requires <u>technical</u> and <u>management</u> chang

ADDGE BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

oon targets to meet global, regulatory, and corporate goals

GLOBAL					
	 Reduce emissions by 7.6% annually for the next 10 years to meet th 1.5° C ceiling on temperature rise. United Nations Environment Programme 2015 Paris Agreement Goal of Net-zero carbon emissions by 2050 US, President Joe Biden's EO directs agency pursuit of this goal 				
ATIONAL					
ORPORATE	 "Limiting global warming to well-below 2°C above pre-industrial levels." More than 500 companies established these Science Based Targets Zero carbon and Zero net carbon 				
FACILITY and SITE	 Regulatory Corporate Science based 				

ADDGE BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

SO 50001 business practice is:

mework for continual improvement of energy performance bal standard developed by 56 countries with US leadership xible roadmap used by over 42,000 sites

001's data-driven, flexible design helps hizations of all kinds and sizes to achieve tent energy and cost savings over the long term

CONTINUOUS IN OCO

0001 Saves Energy

0001 Builds Resilience

- 50001 Drives Decarbonization
- 50001 Promotes Efficiency

echnical Assistance: Tools and Resources

MEASUR Tools Suite

- ttps://www.energy.gov/eere/amo/measur
- User friendly
- Open source
- Developed by subject matter experts
- Coming in 2022: VERIFI (dashboard)

etter ants

ADDEE BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

ding Carbon in MEASUR Tool Suite

- dding carbon mitigation etermination to the energy avings calculations in xisting tools in MEASUR
- AEASUR tools and alculators are useful for erforming ground-up nalysis of energy saving pportunities
- lew decarbonization tools
- Some are already in MEASUR
- Some are standalone
- More in development

ndustrial Action Plan Tool

- The Action Plan Tool developed for industrial L partners
- Aids in reporting and visualizing their scope 1 of scope 2 carbon emission both at the corporate and facility levels
- Helps partners create/evaluate high-lev roadmaps to decarbonization

oon Footprint and Decarbonization Scenario Analysis Tool

- ables users to create and analyze baseline emissions
- ovides users the ability to evaluate decarbonization scenarios and perform techno conomic analyses (in development)
- e baseline analysis part is going through Beta testing with few Better Plants partner

on Emissions Inventory Calculator

rboncalc.ORNL.gov

- Allows users to quickly calculate carbon emissions based on various fuel sources
- Includes built-in carbon conversion factors for fossil fuels and the various electric grid regions

A Co2Savings ×					•
\leftrightarrow \rightarrow C \triangle \triangleq carboncalc.c					* 🖬 🖷
🏢 Apps 🧯 BB Challenge 🤱 Better	Plants 🛛 🥈 Better Plants Bette 🔀 ORNL Finar	ncial Rep 🐤 Salesforce - Better	🞙 Google Maps 🌎 GitHub - DOE AMO 📀 Kissoo	ck 📀 EnergyVortex	» 📔 📙 Other bookr
Carbon En	nissions Calculator				Reset Data Use
BASELINE		MODIFICATION		Results	Help
	+Add Emission Source		+Add Emission Source		
Emission Source #1	Delete	Emission Source #1	Delete	CO ₂₆	, Emissions
Emission Source Type	Fuel ~	Emission Source Type	Fuel ~		
Emission Source	Natural Gas 🗸	Emission Source	Natural Gas 🗸		n
Fuel Type	Natural Gas 🗸	Fuel Type	Natural Gas 🗸	200	
Fuel Use	1995 MMBtu	Fuel Use	1500 MMBtu		
Carbon Emissions	53.06 kg CO ₂ /MMBtu	Carbon Emissions	53.06 kg CO ₂ /MMBtu	0 ^N 150	
Methane Emissions	1 g CH ₄ /MMBtu	Methane Emissions	1 g CH ₄ /MMBtu	8	
Nitrous Oxide Emissions	0.1 g NO ₂ /MMBtu	Nitrous Oxide Emissions	0.1 g NO ₂ /MMBtu	² OD 100 100	
Emission Source #2	Delete	Emission Source #2	Delete		
Emission Source Type	Fuel ~	Emission Source Type	Fuel ~	50	
Emission Source	Coal ~	Emission Source	Coal ~		
Fuel Type	Mixed - Industrial Sector 🗸	Fuel Type	Mixed - Industrial Sector	0-Baseline	Modification
Fuel Use	500 MMBtu	Fuel Use	300 MMBtu	Emissions Source	#3 Emissions Sourc
Carbon Emissions	94.67 kg CO ₂ /MMBtu	Carbon Emissions	94.67 kg CO ₂ /MMBtu	Emissions Source	#1
Methane Emissions	11 g CH₄/MMBtu	Methane Emissions	11 g CH ₄ /MMBtu		
Nitrous Oxide Emissions	1.6 g NO ₂ /MMBtu	Nitrous Oxide Emissions	1.6 g NO ₂ /MMBtu	THE	
Emission Source #3	Delete	Emission Source #3	Delete	Total Emission Output Rate	
Emission Source Type	Fuel ~	Emission Source Type	Fuel ~	Baseline Summary Emission Source #1	106.0 toni
Emission Source	Petroleum-based fuels ~	Emission Source	Petroleum-based fuels ~	Emission Source #2	47.7 tonn
Fuel Type	Diesel (Distillate Fuel #2) ~	Fuel Type	Diesel (Distillate Fuel #2)	Emission Source #3	74.2 tonn
Fuel Use	1000 MMBtu	Fuel Use	800 MMBtu	Modification Summary	
Carbon Emissions	73.96 kg CO ₂ /MMBtu	Carbon Emissions	73.96 kg CO ₂ /MMBtu	Emission Source #1	79.7 tonn
Methane Emissions	3 g CH ₄ /MMBtu	Methane Emissions	3 g CH ₄ /MMBtu	Emission Source #2	28.6 tonn
Nitrous Oxide Emissions	0.6 g NO ₂ /MMBtu	Nitrous Oxide Emissions	0.6 g NO ₂ /MMBtu	Emission Source #3	59.4 tonn
				Baseline Total	227.9 toni
L				Ant on a more a service	

ADGE BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

rification for Decarbonization

lectrification.ORNL.gov

rovides users with a quick ay to estimate the npacts of electrifying a ossil fuel process

- Emissions impact
- Cost impact
- Consumption impact
- Demand Impact

 	er Plants Bette 🛛 🛃 ORNL Financial Rep 🔷 Salesforce - Better	🖗 Google Maps 🌎 GitHub - DOE AMO 🔗 Kissock	☆ 🔝 … : ♦ EnergyVortex » 🖪 Other bookm
Electrification for Decarl	bonization		Reset Data
Annual Operating Hours	a 760	hrs/yr	Help
Current Fuel Based Equipment			
Energy Source	Natural Gas	100%	
Fuel Cost		IMBtu	
Fuel-Fire Equipment Efficiency	60	97	
1.4 4		50%	
Heat Input for Fuel-Fire Equipment		Btu/hr 33%	
Carbon Emissions	53.06 kg CO ₂ /MMBtu	3370	17'
Methane Emissions Nitrous Oxide Emissions	1 g CH₄/MMBtu 0.1 g NO₂/MMBtu	0%	
Current CO ₂ Emissions	4,648.06 tonne CO ₂ /yr		
Current Fuel Costs	\$350,400 /yr		
		-50%	
Potential Electrical Equipment		_	
Electricity Cost	0.066	5/kWh	-100%
Electrically Heated Equipment Efficiency	90	-100% Energy Reductio	on Cost Reduction CO2 Re
Estimated Electric Peak Demand	1,953.32 kW		
eGrid Region	WECC	~	
Grid Subregion	CAMX: WECC California	 Current Fuel Usage 	
Carbon Emissions	225.2 kg CO ₂ /MWh	Fuel Use	87,600 MMBtu/yr
Methane Emissions	15.42 g CH ₄ /MWh	Fuel Use (MWh)	25,673 MWh/yr
Nitrous Emissions	1.81 g N ₂ O/MWh	Energy Cost	\$350,400 /yr
Potential CO ₂ Emissions Potential Electricity Costs	3,853.41 tonne CO ₂ /yr \$1,129,329 /yr	CO ₂ Emissions	4,648 MT CO ₂ /yr
Clothia Elocatory Coolo	¢1,120,0201)1	CO2e Emissions	4,653 MT CO2e/yr
		Potential Electricity Results	
		Electricity Use	17,111 MWh/yr
		Electricity Use (MMBtu)	58,385 MMBtu/yr
		Energy Cost	\$1,129,329 /yr
		CO ₂ Emissions	3,853 MT CO ₂ /yr
		CO2e Emissions	3,869 MT CO ₂₀ /yr
		Impact	
		Site Energy Savings (MMBtu)	29,215 MMBtu/yr
		Site Energy Savings (MWh)	8,562 MWh/yr
		Electrical Demand Increase	1,953 kW
		Energy Cost Savings	-\$778,929 /yr
		CO ₂ Reduction	795 MT CO ₂ /yr
		CO ₂ e Reduction	784 MT CO2e/yr

Excel-based calculator to compare total process heating cost betwe fired heating system and electrotechnology (ET).

Inputs

ergy use data for fuel fired and ET based tems. (electricity, natural gas ,steam usage)

perational data including hours, production e, product yield (reject rate), product losses e to thermal processing (i.e. oxidation, inkage etc.).

ost data for utilities (i.e. fuel, electricity, water, c.), product loss cost, labor cost, O & M cost, nortization cost and other costs related to the tem operation.

Output

From case study on NG-Fired Furnace vs Induction Furnace Forging Plant

I (aiming to release beta version in several months)

- ne future iteration of ne EnPI tool
- llows users to manage Il energy and carbon tility-level data
- sers can create facility r corporate level ashboards
- Vill provide users with a ariety of customizable porting options (Better ants, 50001 Ready, EP, etc)
- /ill incorporate smaller OE tools (PEPEx, PWP, potprint Tool, etc)

ADGE BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

More Information?

See <u>Technical Partnerships</u> | Department of Energy

T OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY