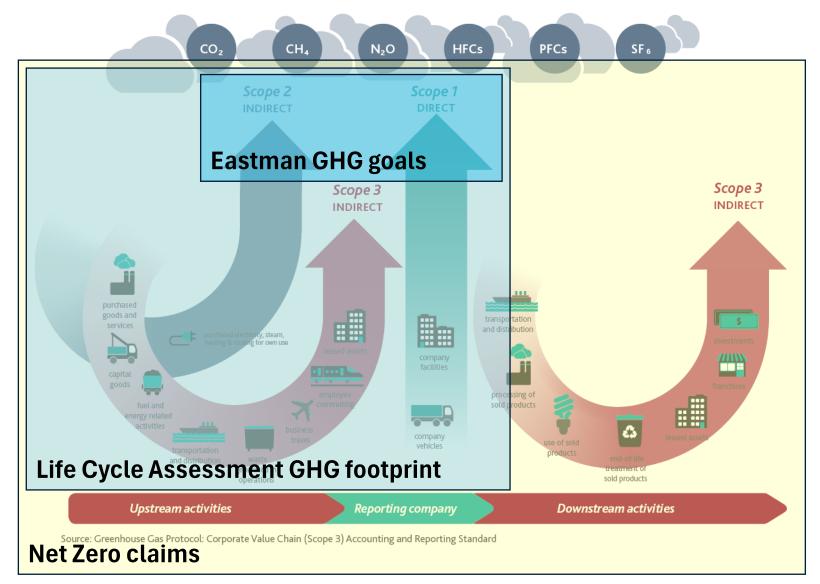
EASTMAN


Technology Perspective:
Scope 1 Greenhouse Gas Emissions Reduction

Council of Industrial Boiler Owners Conference · May 13, 2025

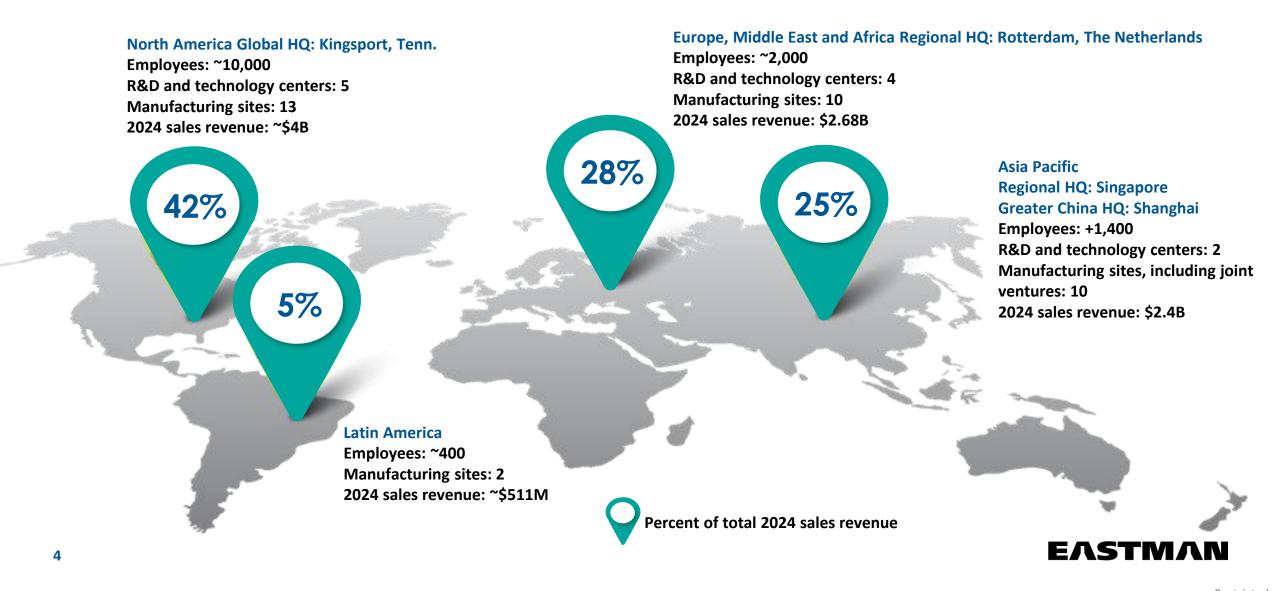
Greg WellmanTechnology Manager,
Decarbonization

Context: Greenhouse gas emissions scopes

A materials innovation company

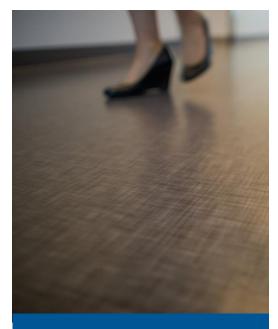
Eastman is a materials innovation company that is:

- Dedicated to **enhancing the quality of life** in a material way
- Committed to mitigating climate change, mainstreaming circularity and caring for people and society
- Celebrating the inclusion of its diverse global workforce of ~14,000 employees
- A Fortune 500 company with 2024 revenue of ~9.4 billion USD and more than 100 years of vital innovations



A broad global presence

A diverse portfolio of businesses


Advanced Materials

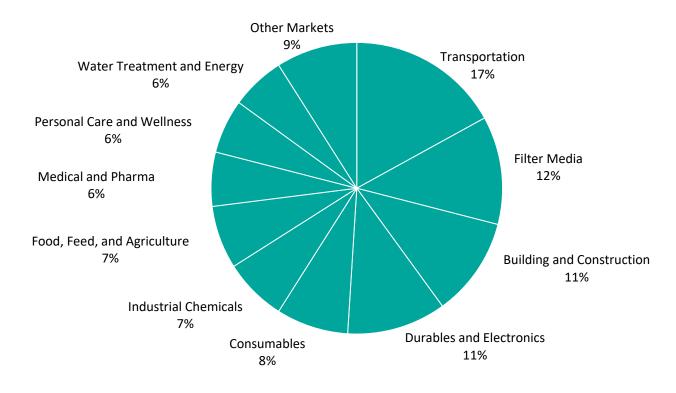
2024 sales revenue: \$3.0B 32% of total Eastman sales

Additives & Functional Products

2024 sales revenue: \$2.9B 31% of total Eastman sales

Chemical Intermediates

2024 sales revenue: \$2.1B 23% of total Eastman sales



Fibers2024 sales revenue: \$1.3B
14% of total Eastman sales

Serving diverse markets and customers

The diversity of the geographies, markets and customers that we serve provides a source of strength and the ability to deliver consistent growth.

2024 revenue by end-use market

Our innovation pillars help address three complex global challenges

CHALLENGES

INNOVATION PILLARS

Climate change

Mitigating climate change

- · Leading expertise in energy efficiency
- Molecular recycling that reduces GHGs
- · Increasing use of renewable energy
- Materials to help reduce carbon footprint

Material waste crisis

Mainstreaming circularity

- · Molecular recycling for infinite recycling of hard-to-recycle waste
- Eastman Renew recycled materials with no performance loss
- Biodegradable, compostable biopolymers

Growing population

Caring for society

- Plastics to preserve food and enable health care
- · Window films for skin safety and road safety
- · Can coatings that are durable and BPA non-intent
- Additives to bolster the world food supply

STRATEGY

Sustainable innovation is the future of Eastman

- We feel a responsibility to deliver products needed for society and are better for the planet.
 - Aventa[™] Renew provides a sustainable, high-performance option for food packaging and quick-service restaurants.
 - Saflex[™] Evoca[™] is a new interlayers platform that will support EV growth.
 - Saflex[™] LiteCarbon Clear helps reduce carbon footprint in buildings.

"Because sustainable innovation is the future for Eastman, we thought it important that we have a metric to keep us accountable. By 2030, we will align all growth R&D spend with sustainability macro trends. That's the goal we set, and our progress makes me confident we'll achieve it."

Chris Killian

Senior Vice President and Chief Technology and Sustainability Officer (he/him/his)

Our innovation pillars help address three complex global challenges

CHALLENGES

INNOVATION PILLARS

Climate change

Mitigating climate change

- Leading expertise in energy efficiency
- Molecular recycling that reduces GHGs
- · Increasing use of renewable energy
- Materials to help reduce carbon footprint

Material waste crisis

- As of 2023, Eastman has reduced it's combined Scope 1&2 GHG emissions 22.3% from our 2017 baseline of ~8 million tCO₂e per year.
- We have removed ~1.8 million tCO₂e per year** from our operations.
- Our goals: **√32**% by 2030; **Carbon neutral** by 2050.

Growing population

Our path toward carbon neutrality

Step 1: Play to your strengths

ENERGY EFFICIENCY

Eastman's climate progress today leans heavily on **energy efficiency**, where we have received multiple **DOE and ENERGY STAR®** awards.

PROCESS TRANSFORMATION

Our molecular recycling technologies produce new materials at a substantially reduced carbon footprint.

- Polyester renewal technology produces virgin-quality intermediates for plastic production with 20-30% fewer greenhouse gas emissions than traditional processes.
- Carbon renewal technology produces syngas with 20-50% fewer greenhouse gas emissions than traditional processes.

ENERGY EFFICIENCY PROCESS TRANSFORMATION RENEWABLE ENERGY ALTERNATIVE TECHNOLOGIES CARBON NEUTRALITY

Step 2: Find the right technology, site, timing, and value fits for clean firm CHP.

RENEWABLE ENERGY

By 2030, 100% of our purchased electricity in North America and Europe will be renewable.

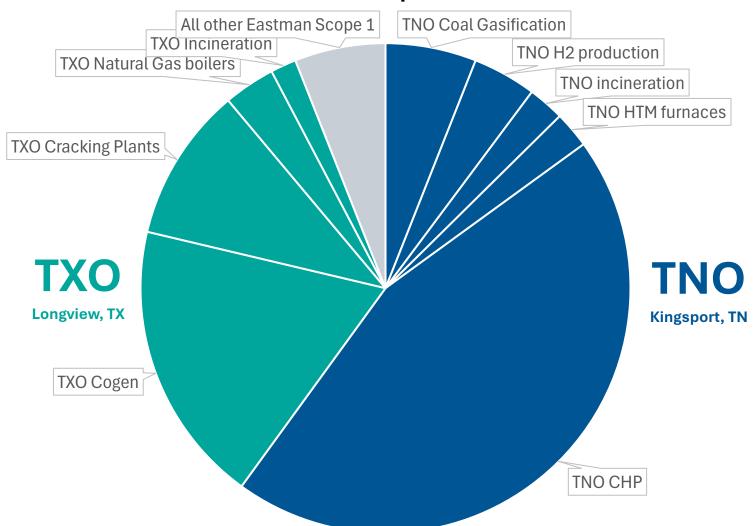
ALTERNATIVE TECHNOLOGIES

We are exploring alternative energy technologies that have the potential to accelerate our progress toward decarbonization.

Approved for external use Restricted

Charting a path to Eastman's low-GHG future... How do we get there?

For every complex problem there is an answer that is clear, simple, and wrong.


- H. L. Mencken

Eastman Scope 1 GHG emissions

Eastman Scope 1 GHGs

Tennessee and Texas Operations represent >90% of Eastman's Scope 1 GHGs.

Source-specific solutions are needed for this diverse emissions portfolio.

Context: Combined Heat and Power at TNO

Four Powerhouses

- 17 Boilers
- 19 Turbine-Generators
- 13.8 kV Electric distribution

Combined Heat & Power

- Cogenerating steam & electricity
 - 1,500 psig / 510°C (950°F)
 - 600 psig / 400°C (750°F)
 - 100 psig / 190°C (375°F)
 - 15 psig / 127°C (260°F)
- ~3.6 Mlb/hr steam
- ~170 MW electricity (plus ~15 MW purchased)

The menu of GHG-reducing assets and services is diverse, and we are working to understand the optimal portfolio of technologies, projects, and timing.

Electrification

 Substitute fossil-based energy and materials with low-GHG electricity

Alternative Fuels

 Generate low-GHG heat and power

CCUS

 Capture and manage CO2 via sequestration or conversion to useful materials

Low-GHG natural gas

 Low-GHG sources or alternate processing of natural gas

Process Innovation

 Design low-GHG new processes

 Reduce GHGs and energy use in existing processes

GHG Compensation

 Indirect emissions reduction

Partnerships

 Foster discovery and identification of decarbonization solutions

Examples under consideration

- Thermal batteries
- Heat pumps
- Green hydrogen
- Electric boilers
- Geologic hydrogen
- Advanced nuclear
- Deep geothermal
- Biomass

- Conventional and next-gen solvents
- Membranes
- CO2 to feedstocks
- CO2 to products

- Renewable natural gas
- Methane pyrolysis to hydrogen
- Polymer Renewal Technology
- Carbon Renewal Technology
- New process development

- Green tariffs
- RECs & PPAs
- High quality carbon offsets

Executed

- DOE
- National Labs
- C2ES1
- Renewable Thermal Collaborative
- EPIXC²

ENERGY EFFICIENCY: foundational pillar for decarbonization

Industrial Decarbonization
Roadmap

Step 1: Play to your strengths.

Step 2: Find the right technology, site, timing, and value fits for clean firm CHP.

Electrification

 Substitute fossil-based energy and materials with low-GHG electricity

Alternative Fuels

• Generate low-GHG heat and power

CCUS

 Capture and manage CO2 via sequestration or conversion to useful materials

Low-GHG natural gas

• Low-GHG sources or alternate processing of natural gas

Process Innovation

• Design low-GHG new processes

• Reduce GHGs and energy use in existing processes

GHG Compensation

 Indirect emissions reduction

Partnerships

 Foster discovery and identification of decarbonization solutions

Examples under consideration

- Thermal batteries
- Heat pumps
- Green hydrogen
- Electric boilers
- Geologic hydrogen
- Advanced nuclear
- Deep geothermal
- Biomass

- Conventional and next-gen solvents
- Membranes
- CO2 to feedstocks
- CO2 to products

- Renewable natural gas
- Methane pyrolysis to hydrogen

- Polymer Renewal **Technology**
- Carbon Renewal Technology
- New process development

- Green tariffs
- RECs & PPAs
- High quality carbon offsets

Executed

- DOE
- National Labs
- C2ES¹
- Renewable Thermal Collaborative
- EPIXC²

ENERGY EFFICIENCY: foundational pillar for decarbonization

Industrial Decarbonization Roadmap

Decarbonization Strategy Model ("DSM")

Scopes 1 & 2 emissions

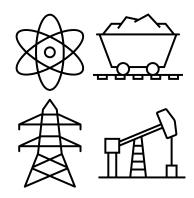
Eastman today

- Boilers
- •Turbine Generators
- Refrigeration Machines
- •HTM Furnaces
- Air Compressors
- Gasification
- •H2 Plants
- •Hydrocarbon Crackers
- •Etc.

Process Needs

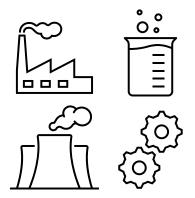
- Steam / Process Heat
- Electricity
- Refrigeration
- Compressed Gas
- Syngas
- CO
- Hydrogen
- Olefins
- Etc.

Eastman 2050


- Subset of today's assets
- New assets & services needed to become carbon neutral

What is the optimal path to become carbon neutral while continuing to meet process needs?

DSM: Inputs required


Materials

Supply (bought) – cost, limits, learning rates

Demand (sold) – value, quantity

Internal (e.g. steam)

Disposal (excess) – cost, limits

Equipment

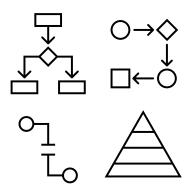
Availability – dismantle dates, commercially available estimates, lifetime

Limits – min/max output

Bill of materials – input or byproduct relationships

Costs – maintenance, conversion, etc.

Projects


Technology options

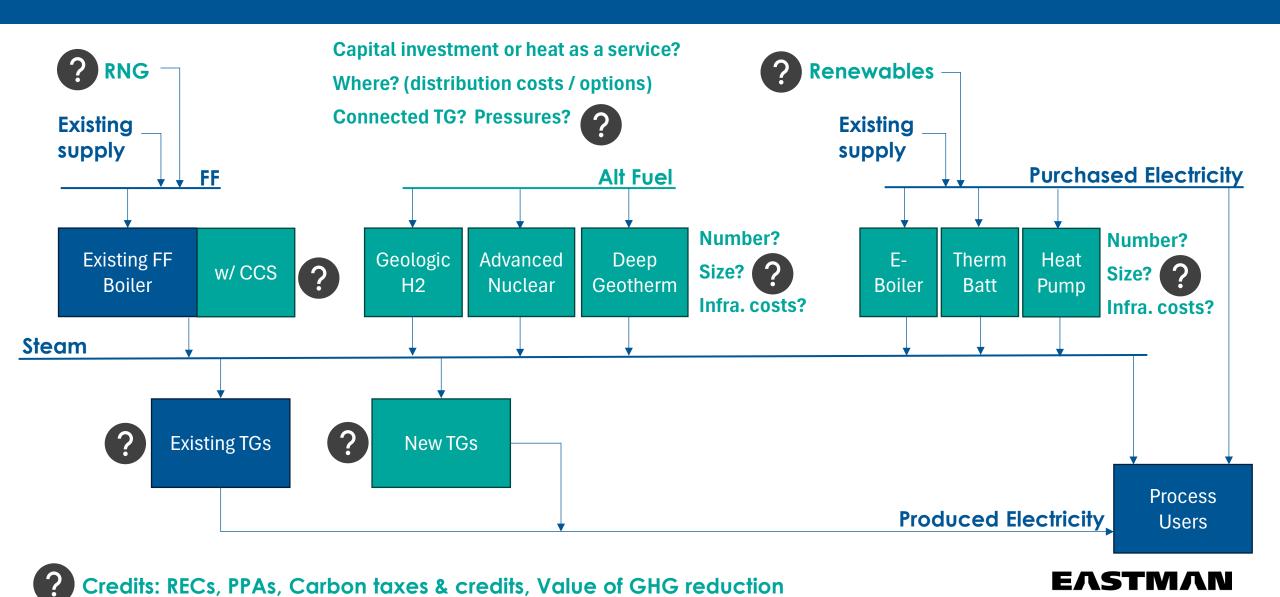
Potential sizes & configurations

Capital costs

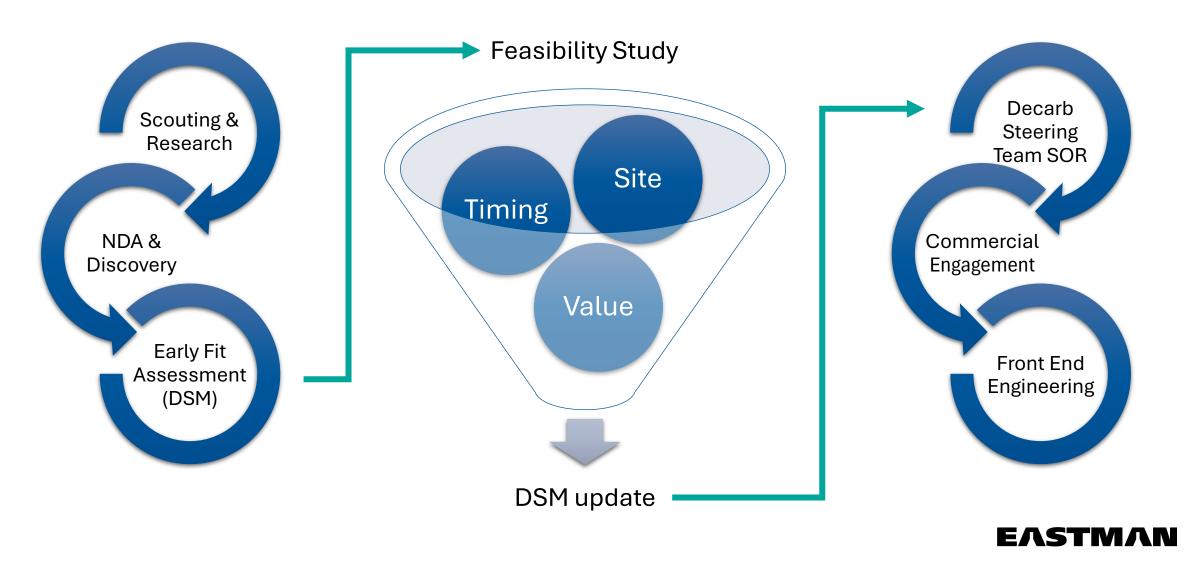
Depreciation schedules

Learning rates

Constraints


Energy demands by manufacturing

Equipment reserve requirements (ensure adequate available capacity)


Capital constraints

Simplified DSM structure

Stages of concept evaluation

Scope 1 GHG reduction efforts

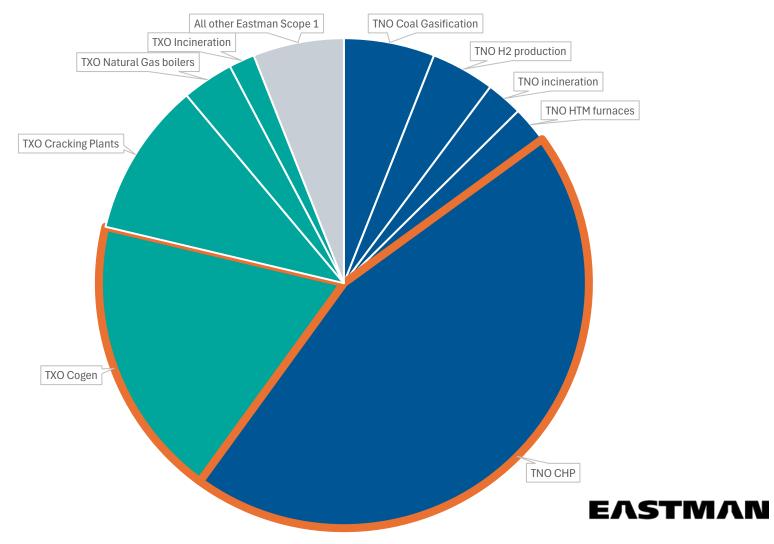
Decarbonization Platform

Mission: Identify and execute value-added pathways for Eastman's decarbonization.

Path forward:

- Continue technology scouting & discovery
- Use DSM scenario analysis to inform recommendations.
- · Launch feasibility studies & FEEDs.

TXO Thermal Battery


Enabled DOE award for 2nd US PRT facility

Eastman Scope 1 GHGs

Thank you!

EASTMAN

Technology Perspective:
Scope 1 Greenhouse Gas Emissions Reduction

Council of Industrial Boiler Owners Conference · May 13, 2025

Greg WellmanTechnology Manager,
Decarbonization