MILLGAN UNIVERSITY

STEAM AND COGENERATION SYSTEM ASSESSMENTS BOILERS

MILLIGAN ENGINEERING 7

- Natural gas fired boiler
 - − \$^{∪S}5/10⁶Btu (\$^{∪S}4.7/GJ)
 - Steam pressure is 120 psig (830 kPaG)

Example

- Steam temperature is 350°F (177°C saturated)
- Ambient temperature is ~70°F (~20°C)

Boiler steam capacity is 60,000 lbm/hr (27 tonne/hr)

Current operating load is 50,000 lbm/hr (23 tonne/hr)

- Natural gas fired boiler
 - − \$^{∪S}5/10⁶Btu (\$^{∪S}4.7/GJ)
 - Steam pressure is 120 psig (830 kPaG)

Example

- Steam temperature is 350°F (177°C saturated)
- Ambient temperature is ~70°F (~20°C)

Boiler steam capacity is 60,000 lbm/hr (27 tonne/hr)

Current operating load is 50,000 lbm/hr (23 tonne/hr)

Fuel cost \$^{US}2,800,000/yr

MILLIGAN ENGINEERING 16

• Fuel type, thermal energy recovery, and combustion control are the primary factors affecting boiler efficiency

MILLIGAN ENGINEERING 17

Measurement Tools

- The primary tools used to
 measure boiler performance are:
 - Combustion analyzer
 - Contact thermometers
 - For flue gas temperatures
 - Infrared thermometers
 - Shell loss and other indications
 - Manometers
 - Water chemistry measurements

Stack Loss - Natural Gas

• Stack loss table is developed for negligible combustibles and no condensation

Stack Loss	Table for	Typical Natural Gas												
Flue Gas	Flue Gas	Comb	Stack Loss [% of fuel Higher Heating Value input]											
Oxygen	Oxygen	Conc												
Content	Content		Net Stack Temperature [△°F]											
Wet Basis	Dry Basis		{Difference between flue gas exhaust temperature and ambient temperature}											
[%]	[%]	[ppm]	180	205	230	255	280	305	330	355	380	405	430	455
1.0	1.2	0	13.6	14.1	14.7	15.2	15.8	16.3	16.9	17.4	18.0	18.5	19.1	19.6
2.0	2.4	0	13.8	14.3	14.9	15.5	16.1	16.6	17.2	17.8	18.4	18.9	19.5	20.1
3.0	3.6	0	14.0	14.6	15.2	15.8	16.4	17.0	17.6	18.2	18.8	19.4	20.0	20.6
4.0	4.7	0	14.2	14.8	15.5	16.1	16.7	17.4	18.0	18.7	19.3	20.0	20.6	21.2
5.0	5.8	0	14.5	15.1	15.8	16.5	17.2	17.8	18.5	19.2	19.9	20.5	21.2	21.9
6.0	6.9	0	14.8	15.5	16.2	16.9	17.6	18.3	19.1	19.8	20.5	21.2	22.0	22.7
7.0	8.0	0	15.1	15.9	16.6	17.4	18.1	18.9	19.7	20.5	21.2	22.0	22.8	23.6
8.0	9.1	0	15.5	16.3	17.1	17.9	18.8	19.6	20.4	21.2	22.1	22.9	23.7	24.6
9.0	10.1	0	16.0	16.8	17.7	18.6	19.5	20.4	21.2	22.1	23.0	23.9	24.8	25.7
10.0	11.1	0	16.5	17.4	18.4	19.4	20.3	21.3	22.2	23.2	24.2	25.2	26.1	27.1
Actual Exhaust T [°F]			250	275	300	325	350	375	400	425	450	475	500	525
Ambient T [°F]			70	70	70	70	70	70	70	70	70	70	70	70

Reference: Combustion model developed by Greg Harrell, Ph.D., P.E.

Actual Combustion

In actual combustion processes fuel and oxygen do not react perfectly

$$CH_4 + 2O_2 \underset{\text{Release}}{\longrightarrow} \alpha CO_2 + \beta H_2 O + \gamma CO + \delta H_2 + \varepsilon CH_4 + \zeta O_2$$

 Un-reacted CH₄, CO, and H₂ are *fuels* resulting from incomplete combustion

Combustion Management – Principle 1

- Un-reacted CH₄, CO, and H₂ harm combustion operations
 - Safety problems
 - Health issues
 - Efficiency detriments

$$CH_4 + 2O_2 \underset{\text{Energy}}{\longrightarrow} \alpha CO_2 + \beta H_2O + \gamma CO + \delta H_2 + \varepsilon CH_4 + \zeta O_2$$

- Combustion management strives to eliminate un-reacted fuel by adding extra oxygen to the combustion zone
 - Excess O₂ provided to the combustion zone <u>essentially eliminates</u> <u>un-reacted fuel</u>

- Natural gas fired boiler
 - − \$^{∪S}5/10⁶Btu (\$^{∪S}4.7/GJ)
 - Steam pressure is 120 psig (830 kPaG)

Example

- Steam temperature is 350°F (177°C saturated)
- Ambient temperature is ~70°F (~20°C)

Boiler steam capacity is 60,000 lbm/hr (27 tonne/hr)

Current operating load is 50,000 lbm/hr (23 tonne/hr)

Fuel cost \$^{US}2,800,000/yr

MILLIGAN ENGINEERING 38

• Stack loss table is developed for negligible combustibles and no condensation

Stack Loss	Table for			Typic	al Natu	Iral Ga	s							
Flue Gas	Flue Gas	Comb			Stack	Loss [% of f	uel Hi	gher	Heatir	ng Val	lue in	put]	
Oxygen	Oxygen	Conc												
Content	Content			Net Stack Temperature [\Delta^F]										
Wet Basis	Dry Basis		{Differe	Difference between flue gas exhaust temperature and ambient temperature}										
[%]	[%]	[ppm]	180	180 205 230 255 280 305 330 355 380 405 430 455										
1.0	1.2	0	13.6	14.1	14.7	15.2	15.8	16.3	16.9	17.4	18.0	18.5	19.1	19.6
2.0	2.4	0	13.8	14.3	14.9	15.5	16.1	16.6	17.2	17.8	18.4	18.9	19.5	20.1
3.0	3.6	0	14.0	14.6	15.2	15.8	16.4	17.0	17.6	18.2	18.8	19.4	20.0	20.6
4.0	4.7	0	14.2	14.8	15.5	16.1	16.7	17.4	18.0	18.7	19.3	20.0	20.6	21.2
5.0	5.8	0	14.5	15.1	15.8	16.5	17.2	17.8	18.5	19.2	19.9	20.5	21.2	21.9
6.0	6.9	0	14.8	15.5	16.2	16.9	17.6	18.3	19.1	19.8	20.5	21.2	22.0	22.7
7.0	8.0	0	15.1	15.9	16.6	17.4	18.1	18.9	19.7	20.5	21.2	22.0	22.8	23.6
8.0	9.1	0	15.5	16.3	17.1	17.9	18.8	19.6	20.4	21.2	22.1	22.9	23.7	24.6
9.0	10.1	0	16.0	16.8	17.7	18.6	19.5	20.4	21.2	22.1	23.0	23.9	24.8	25.7
10.0	11.1	0	16.5	16.5 17.4 18.4 19.4 20.3 21.3 22.2 23.2 24.2 25.2 26.1 27.1									27.1	
Actual Exhaus	st T [°F]		250 275 300 325 350 375 400 425 450 475 500 52								525			
Ambient T [°F]		70	70	70	70	70	70	70	70	70	70	70	70

• Stack loss table is developed for negligible combustibles and no condensation

Stack Loss	Table for			Typic	al Natu	Iral Ga	S							
Flue Gas	Flue Gas	Comb			Stack	Loss [% of f	uel Hi	gher l	Heatir	ng Val	lue in	put]	
Oxygen	Oxygen	Conc												
Content	Content			Net Stack Temperature [\Delta^F]										
Wet Basis	Dry Basis		{Differe	Difference between flue gas exhaust temperature and ambient temperature}										ure}
[%]	[%]	[ppm]	180	180 205 230 255 280 305 330 355 380 405 430 455										
1.0	1.2	0	13.6	14.1	14.7	15.2	15.8	16.3	16.9	17.4	18.0	18.5	19.1	19.6
2.0	2.4	0	13.8	14.3	14.9	15.5	16.1	16.6	17.2	17.8	18.4	18.9	19.5	20.1
3.0	3.6	0	14.0	14.6	15.2	15.8	16.4	17.0	17.6	18.2	18.8	19.4	20.0	20.6
4.0	4.7	0	14.2	14.8	15.5	16.1	16.7	17.4	18.0	18.7	19.3	20.0	20.6	21.2
5.0	5.8	0	14.5	15.1	15.8	16.5	17.2	17.8	18.5	19.2	19.9	20.5	21.2	21.9
6.0	6.9	0	14.8	15.5	16.2	16.9	17.6	18.3	19.1	19.8	20.5	21.2	22.0	22.7
7.0	8.0	0	15.1	15.9	16.6	17.4	18.1	18.9	19.7	20.5	21.2	22.0	22.8	23.6
8.0	9.1	0	15.5	16.3	17.1	17.9	18.8	19.6	20.4	21.2	22.1	22.9	23.7	24.6
9.0	10.1	0	16.0	16.8	17.7	18.6	19.5	20.4	21.2	22.1	23.0	23.9	24.8	25.7
10.0	11.1	0	16.5	17.4	18.4	19.4	20.3	21.3	22.2	23.2	24.2	25.2	26.1	27.1
Actual Exhaus	st T [°F]		250	275	300	325	350	375	400	425	450	475	500	525
Ambient T [°F]		70	70	70	70	70	70	70	70	70	70	70	70

• Stack loss table is developed for negligible combustibles and no condensation

Stack Loss	Table for			Typic	al Natu	Iral Ga	S							
Flue Gas	Flue Gas	Comb			Stack	Loss [% of f	uel Hi	gher l	Heatir	ng Val	lue in	put]	
Oxygen	Oxygen	Conc												
Content	Content			Net Stack Temperature [\Delta^F]										
Wet Basis	Dry Basis		{Differe	Difference between flue gas exhaust temperature and ambient temperature}										ure}
[%]	[%]	[ppm]	180	180 205 230 255 280 305 330 355 380 405 430 455										
1.0	1.2	0	13.6	14.1	14.7	15.2	15.8	16.3	16.9	17.4	18.0	18.5	19.1	19.6
2.0	2.4	0	13.8	14.3	14.9	15.5	16.1	16.6	17.2	17.8	18.4	18.9	19.5	20.1
3.0	3.6	0	14.0	14.6	15.2	15.8	16.4	17.0	17.6	18.2	18.8	19.4	20.0	20.6
4.0	4.7	0	14.2	14.8	15.5	16.1	16.7	17.4	18.0	18.7	19.3	20.0	20.6	21.2
5.0	5.8	0	14.5	15.1	15.8	16.5	17.2	17.8	18.5	19.2	19.9	20.5	21.2	21.9
6.0	6.9	0	14.8	15.5	16.2	16.9	17.6	18.3	19.1	19.8	20.5	21.2	22.0	22.7
7.0	8.0	0	15.1	15.9	16.6	17.4	18.1	18.9	19.7	20.5	21.2	22.0	22.8	23.6
8.0	9.1	0	15.5	16.3	17.1	17.9	18.8	19.6	20.4	21.2	22.1	22.9	23.7	24.6
9.0	10.1	0	16.0	16.8	17.7	18.6	19.5	20.4	21.2	22.1	23.0	23.9	24.8	25.7
10.0	11.1	0	16.5	16.5 17.4 18.4 19.4 20.3 21.3 22.2 23.2 24.2 25.2 26.1 27.1									27.1	
Actual Exhaus	st T [°F]		250 275 300 325 350 375 400 425 450 475 500 52								525			
Ambient T [°F]		70	70	70	70	70	70	70	70	70	70	70	70

$\eta_{Boiler} \approx 100\% - 21.2\% = 78.8\%_{HHV}$

• Stack loss table is developed for negligible combustibles and no condensation

Stack Loss	Table for			Туріс	al Natu	ral Gas	;							
Flue Gas	Flue Gas	Comb			Stack I	_oss [%	ն of fu	el Hig	her H	eating	y Valu	e inpu	lt]	
Oxygen	Oxygen	Conc												
Content	Content			Net Stack Temperature [△°F]										
Wet Basis	Dry Basis		{Differen	Difference between flue gas exhaust temperature and ambient temperature}										
[%]	[%]	[ppm]	180	180 205 230 255 280 305 330 355 380 405 430 455										
1.0	1.2	0	13.6	14.1	14.7	15.2	15.8	16.3	16.9	17.4	18.0	18.5	19.1	19.6
2.0	2.4	0	13.8	14.3	14.9	15.5	16.1	16.6	17.2	17.8	18.4	18.9	19.5	20.1
3.0	3.6	0	14.0	14.6	15.2	15.8	16.4	17.0	17.6	18.2	18.8	19.4	20.0	20.6
4.0	4.7	0	14.2	14.8	15.5	16.1	16.7	17.4	18.0	18.7	19.3	20.0	20.6	21.2
5.0	5.8	0	14.5	15.1	15.8	16.5	17.2	17.8	18.5	19.2	19.9	20.5	21.2	21.9
6.0	6.9	0	14.8	15.5	16.2	16.9	17.6	18.3	19.1	19.8	20.5	21.2	22.0	22.7
7.0	8.0	0	15.1	15.9	16.6	17.4	18.1	18.9	19.7	20.5	21.2	22.0	22.8	23.6
8.0	9.1	0	15.5	16.3	17.1	17.9	18.8	19.6	20.4	21.2	22.1	22.9	23.7	24.6
9.0	10.1	0	16.0	16.8	17.7	18.6	19.5	20.4	21.2	22.1	23.0	23.9	24.8	25.7
10.0	11.1	0	16.5 17.4 18.4 19.4 20.3 21.3 22.2 23.2 24.2 25.2 26.1 27.1									27.1		
Actual Exhaust	T [°F]		250	275	300	325	350	375	400	425	450	475	500	525
Ambient T [°F]			70	70	70	70	70	70	70	70	70	70	70	70

$$\eta_{Boiler} \approx 100\% - 17.4\% = 82.6\%_{HHV}$$

Savings Analysis

$$\sigma_{Savings} = \left(1 - \frac{\eta_1}{\eta_2}\right) \frac{\dot{E}_{Steam}}{\eta_1} \kappa_{fuel}$$

$$\sigma_{Savings} = \left(1 - \frac{78.8\%}{82.6\%}\right) 2,800,000 \frac{\$}{yr}$$

 $\sigma_{Savings} = 128,000 \frac{\$}{yr}$

• Stack loss table is developed for negligible combustibles and no condensation

Stack Loss	Table for			Туріс	al Natu	ral Gas	;							
Flue Gas	Flue Gas	Comb			Stack I	Loss [%	ն of fu	el Hig	her H	eating	y Valu	e inpu	lt]	
Oxygen	Oxygen	Conc												
Content	Content			Net Stack Temperature [∆°F]										
Wet Basis	Dry Basis		{Differen	Difference between flue gas exhaust temperature and ambient temperature}										
[%]	[%]	[ppm]	180	180 205 230 255 280 305 330 355 380 405 430 455										
1.0	1.2	0	13.6	14.1	14.7	15.2	15.8	16.3	16.9	17.4	18.0	18.5	19.1	19.6
2.0	2.4	0	13.8	14.3	14.9	15.5	16.1	16.6	17.2	17.8	18.4	18.9	19.5	20.1
3.0	3.6	0	14.0	14.6	15.2	15.8	16.4	17.0	17.6	18.2	18.8	19.4	20.0	20.6
4.0	4.7	0	14.2	14.8	15.5	16.1	16.7	17.4	18.0	18.7	19.3	20.0	20.6	21.2
5.0	5.8	0	14.5	15.1	15.8	16.5	17.2	17.8	18.5	19.2	19.9	20.5	21.2	21.9
6.0	6.9	0	14.8	15.5	16.2	16.9	17.6	18.3	19.1	19.8	20.5	21.2	22.0	22.7
7.0	8.0	0	15.1	15.9	16.6	17.4	18.1	18.9	19.7	20.5	21.2	22.0	22.8	23.6
8.0	9.1	0	15.5	16.3	17.1	17.9	18.8	19.6	20.4	21.2	22.1	22.9	23.7	24.6
9.0	10.1	0	16.0	16.8	17.7	18.6	19.5	20.4	21.2	22.1	23.0	23.9	24.8	25.7
10.0	11.1	0	16.5 17.4 18.4 19.4 20.3 21.3 22.2 23.2 24.2 25.2 26.1 27.1								27.1			
Actual Exhaust	T [°F]		250 275 300 <u>325</u> 350 375 400 425 450 475 500								525			
Ambient T [°F]			70	70	70	70	70	70	70	70	70	70	70	70

$$\eta_{Boiler} \approx 100\% - 17.4\% = 82.6\%_{HHV}$$

• Stack loss table is developed for negligible combustibles and no condensation

Stack Loss	Table for			Туріс	al Natu	ral Gas	i							
Flue Gas	Flue Gas	Comb			Stack	Loss [%	6 of fu	el Hig	her H	eating	y Valu	e inpu	lt]	
Oxygen	Oxygen	Conc												
Content	Content			Net Stack Temperature [∆°F]										
Wet Basis	Dry Basis		{Differen	Difference between flue gas exhaust temperature and ambient temperature}										
[%]	[%]	[ppm]	180	180 205 230 255 280 305 330 355 380 405 430 455										
1.0	1.2	0	13.6	14.1	14.7	15.2	15.8	16.3	16.9	17.4	18.0	18.5	19.1	19.6
2.0	2.4	0	13.8	14.3	14.9	15.5	16.1	16.6	17.2	17.8	18.4	18.9	19.5	20.1
3.0	3.6	0	14.0	14.6	15.2	15.8	16.4	17.0	17.6	18.2	18.8	19.4	20.0	20.6
4.0	4.7	0	14.2	14.8	15.5	16.1	16.7	17.4	18.0	18.7	19.3	20.0	20.6	21.2
5.0	5.8	0	14.5	15.1	15.8	16.5	17.2	17.8	18.5	19.2	19.9	20.5	21.2	21.9
6.0	6.9	0	14.8	15.5	16.2	16.9	17.6	18.3	19.1	19.8	20.5	21.2	22.0	22.7
7.0	8.0	0	15.1	15.9	16.6	17.4	18.1	18.9	19.7	20.5	21.2	22.0	22.8	23.6
8.0	9.1	0	15.5	16.3	17.1	17.9	18.8	19.6	20.4	21.2	22.1	22.9	23.7	24.6
9.0	10.1	0	16.0	16.8	17.7	18.6	19.5	20.4	21.2	22.1	23.0	23.9	24.8	25.7
10.0	11.1	0	16.5 17.4 18.4 19.4 20.3 21.3 22.2 23.2 24.2 25.2 26.1 27.1								27.1			
Actual Exhaust	T [°F]		250 275 300 <u>325</u> 350 375 400 425 450 475 500								525			
Ambient T [°F]			70	70	70	70	70	70	70	70	70	70	70	70

$$\eta_{Boiler} \approx 100\% - 15.5\% = 84.5\%_{HHV}$$

Savings Analysis

$$\sigma_{Savings} = \left(1 - \frac{\eta_1}{\eta_2}\right) \frac{\dot{E}_{Steam}}{\eta_1} \kappa_{fuel}$$

$$\sigma_{Savings} = \left(1 - \frac{82.6\%}{84.5\%}\right) 2,670,000 \frac{\$}{yr}$$

 $\sigma_{Savings} = 60,000 \frac{\$}{yr}$

ENGINEERING

ENGINEERING

Simple Installation

Blowdown Related System Loss

Steam System Impact

Blowdown Related System Loss

Steam System Impact

https://www.energy.gov/eere/amo/measur

Steam Leaks

Orifice	Leak	Rate [lbr	n/hr]									
Diameter	Steam S	upply Pr	essure [psig]								
[inch]	20	50	100	150	300	400	500					
1/16	3	6	11	16	30	39	49					
1/8	13	25	43	62	119	157	195					
3/16	30	55	98	140	268	353	439					
1/4	53	98	174	249	477	628	780					
5/16	82	153	271	390	745	981	1,218					
3/8	118	221	391	561	1,073	1,413	1,754					
7/16	161	300	532	764	1,460	1,924	2,388					
1/2	210	392	695	998	1,907	2,513	3,118					
	3	18	43	68	143	193	243					
		Discharge Pressure [psig]										
Discharge coeffic	eient	0.6	dimensio	nless								

Steam Leaks

Orifice	Leak	Rate [lbr	n/hr]								
Diameter	Steam S	upply Pr	essure [psig]							
[inch]	20	50	100	150	300	400	500				
1/16	3	6	11	16	30	39	49				
1/8	13	25	43	62	119	157	195				
3/16	30	55	98	140	268	353	439				
1/4	53	98	174	249	477	628	780				
5/16	82	153	271	390	745	981	1,218				
3/8	118	221	391	561	1,073	1,413	1,754				
7/16	161	300	532	764	1,460	1,924	2,388				
1/2	210	392	695	998	1,907	2,513	3,118				
	3	18	43	68	143	193	243				
	Discharge Pressure [psig]										
Discharge coeffic	ient	0.6	dimensio	nless							

Steam Leaks

Orifice	Leak Rate	ə [\$/yr]										
Diameter	Steam Su	pply Pres	ssure [psig]								
[inch]	20	50	100	150	300	400	500					
1/16	300	500	1,000	2,600	3,400	4,300	1,400					
1/8	1,200	2,100	3,800	10,400	13,800	17,100	5,500					
3/16	2,600	4,800	8,600	23,500	31,000	38,400	12,300					
1/4	4,600	8,600	15,200	41,800	55,000	68,300	21,900					
5/16	7,200	13,400	23,800	65,200	86,000	106,700	34,100					
3/8	10,400	19,300	34,200	94,000	123,800	153,700	49,200					
7/16	14,100	26,300	46,600	127,900	168,500	209,200	66,900					
1/2	18,400	34,300	60,900	167,000	220,100	273,200	87,400					
	3	18	43	68	143	193	243					
	Discharge	e Pressur	e [psig]								
Discharge coe	fficient	0.6 dimensionless										
Steam cost		10.00	\$/10 ³ lbi	m								

World Class Steam Trap Maintenance Program

- Investigate each trap at least one time each year (problem areas and high pressure should be more frequent)
 - Performance
 - Testing equipment is required
 - An order of magnitude leak rate should be determined for failed traps
 - Orifice calculations set the maximum steam flow
 - Trap type
 - Trap selection should match the application
 - Universal mounts can be a good option
 - Installation
 - Establish an investigation route
 - Condensate return
 - Outsourcing can be a good option

ERGY MANAGEMENT SERVICES 78

RGY MANAGEMENT SERVICES 85

Steam Trap Selection

- The steam trap was changed to a floatthermostatic type trap
 - Dramatic increase in condensate temperature and heat transfer

Steam Trap Selection Guide

Application	Тгар Туре				
	Float & Thermostatic	Thermo- static	Inverted Bucket	Thermo- dynamic	Orifice
Header Drip-legs	Preferred		Alternate	Alternate	
Heat Exchangers: Shell-and-Tube	Preferred		Alternate	Alternate	
Plate-and-Frame	Preferred		Alternate	Alternate	
Air-Finned Tube	Preferred		Alternate	Alternate	
Cylinder Dryer	Alternate		Preferred		Preferred
Tank Jacket	Preferred		Alternate	Alternate	
HVAC Radiator	Preferred		Alternate	Alternate	
Steam Tracing	Alternate	Preferred	Alternate	Alternate	

ENERGY MANAGEMENT SERVICES 91

SI MAN

THE OWNER WHEN THE

- A 20 foot long section of 150 psig header is observed to be uninsulated
 - 10 inch nominal diameter
 - Steam
 temperature is
 approximately
 550°F

Missing Insulation

Insulation Evaluation Software

Insulation Savings

If the energy impact is realized "at fuel cost":

$$\sigma_{condensate} = \frac{\dot{m}_{condensate} (h_{condensate} - h_{makeup}) T_{\mathcal{K}_{fuel}}}{\eta_{boiler}}$$

$$\boldsymbol{\sigma}_{condensate} = 5,000 \frac{lbm}{hr} \left(147.91 \frac{Btu}{lbm} - 38.05 \frac{Btu}{lbm} \right) \left(8,760 \frac{hrs}{yr} \right) \left(10.0 \frac{\$}{10^6 Btu} \right) \left(\frac{1}{0.80} \right)$$

$$\sigma_{condensate} = 60,000 \frac{\$}{yr}$$

Cascade Condensate Systems

NPSH

- Net Positive Suction Head (NPSH) is the head required at the pump inlet to keep the liquid from cavitating (boiling)
- The pump inlet or suction side is the lowpressure point where cavitation will first occur

$$P_2 - P_1 = -\rho \vec{g} (z_2 - z_1)$$

NPSH

 Increasing the height of the storage tank above the pump inlet is a very effective method to reduce cavitation potential

$$P_2 - P_1 = -\rho \vec{g} (z_2 - z_1)$$

Driving Force

• What is the main driving force for change??

Driving Force

• What is the main driving force for change??

Driving Force

What is the main driving force for change??

- Energy
 Reliability
 Maintenance
 - Productivity
 - Quality
 - Cost avoidance
 - **Emissions reductions**

Measure

You are not managing what you do not measure

MILLGAN UNIVERSITY

